

## SCIENCE IDEAS MODEL SCHOOL: STRATEGIC APPROACH TO DISTRICT IMPLEMENTATION

Dr. Nancy Romance, Florida Atlantic University Dr. Michael Vitale, East Carolina University

> FOIL Meeting Lake Mary, FL May 16-17, 2018



## Considering Curriculum Policy Issues based on Research:

- importance of cumulative content-area learning to increase achievement in reading comprehension grades 1-5
- decreasing time for science as a content-domain hinders advancing reading comprehension performance for "all" students
- content learning requires changes in policy and practice as it relates to allocated instructional time for integrated science-reading-writing and less time for narrative reading or skill development without content
- grades 3-5 cumulative learning impacts middle school achievement in science and reading comprehension
- grades 1-2 results suggest the importance of early learning using integrated science-reading and writing on grade 3 achievement

#### Science IDEAS Model for Integrating Literacy within In-Depth Science Instruction Integration of Instructional Elements of Model Model Implementation Model Learning Experiences Literacy in Science Prior Knowledge/ **Cumulative Review** Μ Instructional Focus is Always Note- All Instruction begins/ U on Developing In-Depth involves review of prior learning Understanding of Science Concepts Hands-On Activities . . . . . . . . . . D Grades K-2 Note-Multiple activities are used Science Concept а \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ to build student concept Understanding Provides a 45 Min./Day Integrated Science/ Framework for the Integration understanding Literacy Instruction of Instructional Elements (30 Min./Day Science) Reading Comprehension (e.g., Reading, Hands-On, n (15 Min./Day Informational s Concept Mapping, Note-Multiple readings (trade Reading) Journaling/Writing, books/other materials) are used to Applications, Review) build student concept U understanding С Curricular Emphasis is on Cumulative/Meaningful Propositional Concept Mapping Learning of Science Concepts Note- Concept maps are 0 Grades 3-5 (i.e., Learning More About constructed to represent concepts n . . . . . . . . . . What is Being Learned) а and concept relationships learned 90 Min./Day Integrated Science/ \_ \_ \_ \_ \_ \_ \_ Literacy Instruction Result is Proficiency in Journaling/Writing L - - -Cumulative Understanding, Note-Journals provide cumulative Recommended- 30 Min./Day e Organization, and Access as record of learning/Concept maps S Reading/Literature Direct Outcome Transferrable provide a guide for writing S to Future Content area 0 Learning and Reading with n Comprehension s

Application Activities Note- Individual/group projects exploring concepts learned

Nancy Romance (FAU), Michael Vitale (CSD), 11-19-15

#### Science IDEAS: Model School Scale Up





## **Follow Evolutionary Three-Phase Process**

- Initiate Create and Fine-Tune Start-Up Model Schools Use schoolwide implementation in model schools for capacity development
- Establish Sustainability of Initial Model Schools Through teacher PD, development of a teacher leadership cadre, principal leadership, grade level planning, district/area curricular support, monitoring of implementation/ achievement outcomes
- Expand Model to New Schools Use Model Schools and Teacher/Principal leadership and Area Administrators /District Curriculum Leadership as critical resources

# **Requirements for Participation**

# **Scheduling for Science IDEAS**

- a daily, 2-hour block of time for Science IDEAS
  - (hands-on science activities, reading comprehension, concept mapping, writing/journaling, science projects)
- a separate 30-minute daily block of time for literature
- eliminate student pull-outs during the Science IDEAS (e.g., ESE, SAI, ESOL/LEP)
- one full day of grade level planning with a school administrator per science unit for grades 3, 4, & 5

# **Requirements for Participation**

### **Monitoring Science IDEAS Fidelity of Implementation**

- Actively visit classrooms to support implementation
- Complete principal fidelity of implementation clinical judgment form
- Insure teacher completion of teacher reflection fidelity of implementation form
- Adhere to project staff fidelity of implementation schedule (classroom fidelity of implementation visits three times per year: October, January, May)
- Commitment <u>not</u> to adopt any other major school initiative in grades 3-5 during the initial two years of the project.

# **Requirements for Participation**

## Supporting Science IDEAS Project Implementation

- <u>Identify</u> and meet regularly with a Science IDEAS coordinator at each grade level in grades 3, 4, and 5
- Insure adequate school-level instructional resources for science and reading comprehension (e.g., materials for handson activities, trade books and other student reading materials)
- Involve Media Specialist in the identification of unit-specific print and Internet science reading resources
- Promote the Science IDEAS project in the school via inclusion in the school newsletter, presentations at PTA and SAC meetings, and updates at faculty and grade level meetings



# Building School Capacity and Infrastructure for Sustainability and Expansion

- Specialized Teacher Expertise
  - Development of teachers' science content understanding
  - All grades classroom implementation of Science IDEAS model
- Teacher Leadership Cohort
  - Serves as in-school mentors and problem solvers
  - Organizes and delivers summer professional development institutes
  - Serves on school and district curricular committees
- Principal Leadership for Science IDEAS
  - Support and management of grade level curricular planning
  - Monitoring and reporting implementation fidelity



# Building School Capacity and Infrastructure for Sustainability and Expansion (Continued)

- District Management Capacity and Infrastructure for Science IDEAS
  - Monitor implementation status/fidelity and multi-year student achievement trends – using a system's approach
  - Observe Science IDEAS classrooms and participate in professional development
  - Professional development for all new Science IDEAS Principals
  - Professional development collaborate with District Curriculum Specialists and Area Superintendents for Curriculum and Accountability



## **Classroom Implementation Expectations**

# • Students

- Motivated and engaged in learning tasks
- Clear evidence of high quality work by all students
- Display of high level of relevant background knowledge which is applied to new learning tasks
- Enjoy reading as much as they enjoy "doing" science
- Levels the playing field for 'all' students addresses equity

# Teachers

- Confidence in implementing the Science IDEAS Model
- Increased expectations about what all students can achieve
- Active engagement in curricular planning at/across grade levels
- Encourage more in-depth classroom discussions
- Recognize model's potential to support reading comprehension



### **Implications for Modified Accountability Practices**

- Raising Achievement Expectations through Assessment
  - Changing the structure of grade 3-8 reading comprehension accountability assessment
    - Grades 3-8 : Focus on meaningful content-area understanding vs. "general" reading skills
    - Grades K-2 : Use nationally-normed reading tests
  - Interpret performance in grades 3-8 to projected levels of success in HS content-area courses (via achievement trajectories)
  - Emphasize NRT achievement of students in K-2 and in HS contentarea courses as the focus of accountability
- Disaggregate student performance to measure school effectiveness
  - Students continuously enrolled K-5 or K-8
  - Students enrolled for only complete school years
  - Remaining students enrolled only for portion of school year



# SCIENCE IDEAS MODEL SCHOOL: STRATEGIC APPROACH TO DISTRICT IMPLEMENTATION

# GROUP DISCUSSION Q & A NEXT STEPS FOR A DISTRICT