Benchmarks for Excellent Student Thinking (B.E.S.T.)
Mathematics
2022 Access Points-Alternate Academic Achievement Standards (AP-AAAS)
Grade Kindergarten -12

Kindergarten B.E.S.T. Standards Access Points

MA.K.NSO.1 Develop an understanding for counting using objects in a set.	
MA.K.NSO.1.1	Given a group of up to 20 objects, count the number of objects in that group and represent the number of objects with a written numeral. State the number of objects in a rearrangement of that group without recounting
	group without recounting.
	Access Point MA.K.NSO.1.AP.1 Given a group of up to 10 objects, count the number of objects in that group and represent the number by identifying the written numeral. Express the number of objects in a rearrangement of that group without recounting.
MA.K.NSO.1.2	Given a number from 0 to 20, count out that many objects.
	Access Point MA.K.NSO.1.AP.2 Given a number from 0 to 10, count out that many objects.
MA.K.NSO.1.3	Identify positions of objects within a sequence using the words "first," "second," "third," "fourth" or "fifth."
	Access Point MA.K.NSO.1.AP.3 Identify the "first," "second" or "third" object within a sequence.
MA.K.NSO.1.4	Compare the number of objects from 0 to 20 in two groups using the terms less than, equal to or greater than.
	Access Point MA.K.NSO.1.AP.4 Compare the number of objects from 0 to 10 in two groups to determine which group is greater or less, or if the number of objects in the two groups are equal.
MA.K.NSO.2 Recite	number names sequentially within 100 and develop an
understanding for pl	ace value.
MA.K.NSO.2.1	Recite the number names to 100 by ones and by tens. Starting at a given number, count forward within 100 and backward within 20.
	Access Point MA.K.NSO.2.AP.1 Express number names from 1 to 100 by ones and from 10 to 100 by tens. Starting at a given number, count forward to 20 and backwards within 10.
MA.K.NSO.2.2	Represent whole numbers from 10 to 20, using a unit of ten and a group of ones, with objects, drawings, and expressions or equations.
	Access Point MA.K.NSO.2.AP.2 Represent whole numbers from 10 to 19, using one group of 10 ones and some further ones, with objects, drawings or verbalization.

Locate, order and compare numbers from 0 to 20 using the number
line and terms less than, equal to or greater than.
Access Point
MA.K.NSO.2.AP.3 Locate and compare two numbers from 0 to 10
to determine which number is less than, equal to or greater than the
other number.
p an understanding of addition and subtraction operations with
bers.
Explore addition of two whole numbers from 0 to 10, and related
subtraction facts.
Access Point
MA.K.NSO.3.AP.1 Explore addition and subtraction of two whole
numbers within 5 using objects.
Add two one-digit whole numbers with sums from 0 to 10 and
subtract using related facts with procedural reliability.
Access Point
MA.K.NSO.3.AP.2 Apply a strategy for adding and subtracting
two one-digit whole numbers to solve within 5.

Algebraic Reasoning

MA.K.AR.1 Represent and solve addition problems with sums between 0 and 10 and subtraction problems using related facts.	
MA.K.AR.1.1	For any number from 1 to 9, find the number that makes 10 when added to the given number.
	Access Point MA.K.AR.1.AP.1 For any number from 1 to 9, use objects to find the number that makes 10 when added to the given number.

MA.K.AR.1.2	Given a number from 0 to 10, find the different ways it can be
	represented as the sum of two numbers.
	Access Point
	MA.K.AR.1.AP.2 Given a number from 0 to 5, find the different
	ways it can be represented as the sum of two numbers.
MA.K.AR.1.3	Solve addition and subtraction real-world problems using objects,
	drawings or equations to represent the problem.
	Access Point
	MA.K.AR.1.AP.3 Solve addition and subtraction real-world
	problems within 5 using objects, drawings or equations to represent
	the problem.
MA.K.AR.2 Develop an understanding of the equal sign.	
MA.K.AR.2.1	Explain why addition or subtraction equations are true using
	objects or drawings.
	Access Point
	MA.K.AR.2.AP.1 Show that an addition or subtraction equation
	within 5 is true using objects or drawings.

Measurement

MA.K.M.1 Identify a	nd compare measurable attributes of objects.
MA.K.M.1.1	Identify the attributes of a single object that can be measured such
	as length, volume or weight.
	Access Point
	MA.K.M.1.AP.1 Explore the attributes of a single object that can
	be measured such as length or weight.
MA.K.M.1.2	Directly compare two objects that have an attribute which can be
	measured in common. Express the comparison using language to
	describe the difference.
	Access Point
	MA.K.M.1.AP.2 Directly compare two objects to determine which
	is longer/shorter or heavier/lighter.
MA.K.M.1.3	Express the length of an object, up to 20 units long, as a whole
	number of lengths by laying non-standard objects end to end with
	no gaps or overlaps.
	Access Point
	MA.K.M.1.AP.3 Express the length of an object, up to 10 units
	long, as a whole number of lengths using non-standard objects laid
	end to end with no gaps or overlaps.

MA.K.GR.1 Identify,	compare and compose two- and three-dimensional figures.
MA.K.GR.1.1	Identify two- and three-dimensional figures regardless of their size
	or orientation. Figures are limited to circles, triangles, rectangles,
	squares, spheres, cubes, cones and cylinders.
	Access Point
	MA.K.GR.1.AP.1 Identify two- and three-dimensional figures
	regardless of their size. Figures are limited to circles, triangles, rectangles, squares, spheres, cubes, cones and cylinders.
MA.K.GR.1.2	Compare two-dimensional figures based on their similarities,
	differences and positions. Sort two-dimensional figures based on
	their similarities and differences. Figures are limited to circles,
	triangles, rectangles and squares.
	Access Point
	MA.K.GR.1.AP.2a Sort two-dimensional figures based on their
	similarities. Figures are limited to circles, triangles, rectangles and
	squares.
	MA.K.GR.1.AP.2b Use informal spatial language to describe the
	relative positions of two-dimensional figures (e.g., above, below,
	beside, next to, under).
MA.K.GR.1.3	Compare three-dimensional figures based on their similarities,
	differences and positions. Sort three-dimensional figures based on
	their similarities and differences. Figures are limited to spheres,
	cubes, cones and cylinders.
	Access Point
	MA.K.GR.1.AP.3a Sort three-dimensional figures based on their
	similarities. Figures are limited to spheres, cubes, cones and
	cylinders.
	MA.K.GR.1.AP.3b Use informal spatial language to describe the
	relative positions of three-dimensional figures (e.g., above, below,
	beside, next to, under).
MA.K.GR.1.4	Find real-world objects that can be modeled by a given two- or
	three-dimensional figure. Figures are limited to circles, triangles,
	rectangles, squares, spheres, cubes, cones and cylinders.
	Access Point
	MA.K.GR.1.AP.4 Explore real-world objects that can be modeled
	by a given two- or three-dimensional figure. Figures are limited to
	circles, triangles, rectangles, squares, spheres, cubes, cones and
	cylinders.

Geometric Reasoning

MA.K.GR.1.5	Combine two-dimensional figures to form a given composite
	figure. Figures used to form a composite shape are limited to
	triangles, rectangles and squares.
	Access Point
	MA.K.GR.1.AP.5 Recognize that a different figure can be formed
	by combining two smaller two-dimensional figures. Figures used
	to form a composite shape are limited to triangles, rectangles and
	squares.
Data Analysis and Probability	

Data Analysis and Probability	
MA.K.DP.1 Develop an understanding for collecting, representing and comparing data.	
MA.K.DP.1.1	Collect and sort objects into categories and compare the categories
	by counting the objects in each category. Report the results
	verbally, with a written numeral or with drawings.
	Access Point
	MA.K.DP.1.AP.1 Sort objects by characteristic (e.g., size, shape or
	color). Count the objects in each category and report the results.

Grade 1 B.E.S.T. Standards Access Points

	Number Sense and Operations	
	nd counting sequences and understand the place value of two-digit	
numbers.		
MA.1.NSO.1.1	Starting at a given number, count forward and backwards within	
	120 by ones. Skip count by 2s to 20 and by 5s to 100.	
	Access Point	
	MA.1.NSO.1.AP.1 Starting at a given number, count forward	
	within 100 and backwards within 20 by ones. Skip count by 5s from	
	5 to 100.	
MA.1.NSO.1.2	Read numbers from 0 to 100 written in standard form, expanded	
	form and word form. Write numbers from 0 to 100 using standard	
	form and expanded form.	
	Access Point	
	MA.1.NSO.1.AP.2 Read numbers from 0 to 20 written in standard	
	form and expanded form. Generate numbers from 0 to 20 using	
	standard form.	
MA.1.NSO.1.3	Compose and decompose two-digit numbers in multiple ways using	
	tens and ones. Demonstrate each composition or decomposition	
	with objects, drawings, and expressions or equations.	
	Access Point	
	MA.1.NSO.1.AP.3 Compose and decompose numbers up to 20	
	using tens and ones. Demonstrate each composition or	
	decomposition with objects, drawings, and expressions or	
	equations.	
MA.1.NSO.1.4	Plot, order and compare whole numbers up to 100.	
	Access Point	
	MA.1.NSO.1.AP.4 Order (e.g., 5, 9, 13) and compare (e.g., 11 <	
	19) whole numbers up to 20.	
MA.1.NSO.2 Deve	lop an understanding of addition and subtraction operations with	
one- and two-digit		
MA.1.NSO.2.1	Recall addition facts with sums to 10 and related subtraction facts	
	with automaticity.	
	Access Point	
	MA.1.NSO.2.AP.1 Recall addition facts with sums to 5 and related	
	subtraction facts.	
MA.1.NSO.2.2	Add two whole numbers with sums from 0 to 20, and subtract using	
	related facts with procedural reliability.	
	Access Point	
	MA.1.NSO.2.AP.2 Apply a strategy for adding and subtracting two	
	one-digit whole numbers to solve within 10.	

MA.1.NSO.2.3	Identify the number that is one more, one less, ten more and ten less
	than a given two-digit number.
	Access Point
	MA.1.NSO.2.AP.3 Identify the number that is one more and one
	less than a given number within 20.
MA.1.NSO.2.4	Explore the addition of a two-digit number and a one-digit number
	with sums to 100.
	Access Point
	MA.1.NSO.2.AP.4 Explore the addition of a two-digit number from
	11 to 19 and a one-digit number.
MA.1.NSO.2.5	Explore subtraction of a one-digit number from a two-digit number.
	Access Point
	MA.1.NSO.2.AP.5 Explore subtraction of a one-digit number from
	a two-digit number from 11 to 19.

Fractions

MA.1.FR.1 Develop an understanding of fractions by partitioning shapes into halves	
and fourths.	
MA.1.FR.1.1	Partition circles and rectangles into two and four equal-sized parts.
	Name the parts of the whole using appropriate language including
	halves or fourths.
	Access Point
	MA.1.FR.1.AP.1 Partition circles and rectangles into two and four
	equal-sized parts. Recognize the parts of the whole as halves or
	fourths.

Algebraic Reasoning

MA.1.AR.1 Solve addition problems with sums between 0 and 20 and subtraction problems using related facts.	
MA.1.AR.1.1	Apply properties of addition to find a sum of three or more whole numbers.
	Access Point
	MA.1.AR.1.AP.1 Apply the commutative property of addition to
	find a sum of two whole numbers within 20.
MA.1.AR.1.2	Solve addition and subtraction real-world problems using objects, drawings or equations to represent the problem.
	Access Point
	MA.1.AR.1.AP.2 Solve addition and subtraction real-world
	problems within 10 using objects, drawings or equations to
	represent the problem.

MA.1.AR.2 Devel subtraction.	op an understanding of the relationship between addition and
MA.1.AR.2.1	Restate a subtraction problem as a missing addend problem using the relationship between addition and subtraction.
	Access Point
	MA.1.AR.2.AP.1 Use the relationship between addition and
	subtraction to explore subtraction as addition with a missing addend.
MA.1.AR.2.2	Determine and explain if equations involving addition or
	subtraction are true or false.
	Access Point
	MA.1.AR.2.AP.2 Determine if addition or subtraction equations
	(with no more than three terms) are true or false. Sums may not
	exceed 10 and their related subtraction facts.
MA.1.AR.2.3	Determine the unknown whole number in an addition or subtraction
	equation, relating three whole numbers, with the unknown in any
	position.
	Access Point
	MA.1.AR.2.AP.3 Determine the unknown whole number in an addition or subtraction equation, relating three whole numbers, with the result unknown (e.g., $8 - 2 = _$, $_ = 7 + 3$). Sums may not exceed 10 and their related subtraction facts.

Measurement

	Wicasur cincint	
MA.1.M.1 Compare	MA.1.M.1 Compare and measure the length of objects.	
MA.1.M.1.1	Estimate the length of an object to the nearest inch. Measure the	
	length of an object to the nearest inch or centimeter.	
	Access Point	
	MA.1.M.1.AP.1.a Use a ruler to measure the length of an object	
	with exact whole units to the nearest inch.	
	MA.1.M.1.AP.1.b Explore familiar objects that can be used to	
	develop a mental measurement benchmark to understand the	
	relative size of an inch.	
MA.1.M.1.2	Compare and order the length of up to three objects using direct and	
	indirect comparison.	
	Access Point	
	MA.1.M.1.AP.2 Compare and order the length of up to three	
	objects using direct comparison.	
MA.1.M.2 Tell time	MA.1.M.2 Tell time and identify the value of coins and combinations of coins and	
dollar bills.		
MA.1.M.2.1	Using analog and digital clocks, tell and write time in hours and	
	half-hours.	
	Access Point	
	MA.1.M.2.AP.1 Using analog and digital clocks, express the time	
	in hours.	

MA.1.M.2.2	Identify pennies, nickels, dimes and quarters, and express their values using the ¢ symbol. State how many of each coin equal a dollar.
	Access Point
	MA.1.M.2.AP.2 Identify the names and values of pennies, nickels,
	dimes and quarters.
MA.1.M.2.3	Find the value of combinations of pennies, nickels and dimes up to
	one dollar, and the value of combinations of one-, five- and ten-
	dollar bills up to 100 . Use the ¢ and \$ symbols appropriately.
	Access Point
	MA.1.M.2.AP.3a Find the value of a group of only pennies, only
	nickels or only dimes up to \$1.
	MA.1.M.2.AP.3b Find the value of a group of only one-, only five-
	or only ten-dollar bills up to \$100.

Geometric Reasoning

MA.1.GR.1 Ident defining attribute	ify and analyze two- and three-dimensional figures based on their s.
MA.1.GR.1.1	Identify, compare and sort two- and three-dimensional figures based on their defining attributes. Figures are limited to circles, semi- circles, triangles, rectangles, squares, trapezoids, hexagons, spheres, cubes, rectangular prisms, cones and cylinders.Access PointMA.1.GR.1.AP.1 Sort and identify two- or three-dimensional figures
MA.1.GR.1.2	Sketch two-dimensional figures when given defining attributes.Figures are limited to triangles, rectangles, squares and hexagons.Access PointMA.1.GR.1.AP.2 Produce two-dimensional figures when given defining attributes. Figures are limited to triangles, rectangles and squares.

MA.1.GR.1.3	Compose and decompose two- and three-dimensional figures.
	Figures are limited to semi-circles, triangles, rectangles, squares,
	trapezoids, hexagons, cubes, rectangular prisms, cones and
	cylinders.
	Access Point
	MA.1.GR.1.AP.3 Recognize that different figures can be formed by
	putting together smaller two- or three-dimensional figures and that
	smaller figures can be formed by taking apart larger two- or three-
	dimensional figures. Figures are limited to semi-circles, triangles,
	rectangles, squares, trapezoids, hexagons, cubes, rectangular
	prisms, cones and cylinders.
MA.1.GR.1.4	Given a real-world object, identify parts that are modeled by two-
	and three-dimensional figures. Figures are limited to semi-circles,
	triangles, rectangles, squares and hexagons, spheres, cubes,
	rectangular prisms, cones and cylinders
	Access Point
	MA.1.GR.1.AP.4 Explore real-world objects with parts that can be
	modeled by a given two- or three-dimensional figure. Figures are
	limited to semi-circles, triangles, rectangles, squares and hexagons,
	spheres, cubes, rectangular prisms, cones and cylinders.

Data Analysis and Probability

MA.1.DP.1 Collect, represent and interpret data tally marks and using pictographs.	
MA.1.DP.1.1	Collect data into categories and represent the results using tally
	marks or pictographs.
	Access Point
	MA.1.DP.1.AP.1 Sort data into two categories and represent the
	results using tally marks or pictographs.
MA.1.DP.1.2	Interpret data represented with tally marks or pictographs by
	calculating the total number of data points and comparing the totals
	of different categories.
	Access Point
	MA.1.DP.1.AP.2 Interpret data represented with tally marks or
	pictographs to determine how many in each category and compare
	the values of two categories of data in terms of more or less.

Grade 2 B.E.S.T. Standards Access Points

MA.2.NSO.1 Understand the place value of three-digit numbers.	
MA.2.NSO.1.1	Read and write numbers from 0 to 1,000 using standard form,
	expanded form and word form.
	Access Point
	MA.2.NSO.1.AP.1 Read and generate numbers from 0 to 100 using
	standard form and expanded form.
MA.2.NSO.1.2	Compose and decompose three-digit numbers in multiple ways
	using hundreds, tens and ones. Demonstrate each composition or
	decomposition with objects, drawings, and expressions or
	equations.
	Access Point
	MA.2.NSO.1.AP.2 Compose and decompose two-digit numbers using
	tens and ones. Demonstrate each composition or decomposition with
	objects, drawings, expressions or equations.
MA.2.NSO.1.3	Plot, order and compare whole numbers up to 1,000.
	Access Point
	MA.2.NSO.1.AP.3 Plot, order and compare whole numbers up to
	100.
MA.2.NSO.1.4	Round whole numbers from 0 to 100 to the nearest 10.
	Access Point
	MA.2.NSO.1.AP.4 Round whole numbers from 0 to 100 to the
	nearest 10 with visual support.
	nd subtract two- and three-digit whole numbers.
MA.2.NSO.2.1	Recall addition facts with sums to 20 and related subtraction facts
	with automaticity.
	Access Point
	MA.2.NSO.2.AP.1 Recall addition facts with sums to 10 and
	related subtraction facts.
MA.2.NSO.2.2	Identify the number that is ten more, ten less, one hundred more and
	one hundred less than a given three-digit number.
	Access Point
	MA.2.NSO.2.AP.2 Identify the number that is ten more or ten less
	than a given two-digit number.
MA.2.NSO.2.3	Add two whole numbers with sums up to 100 with procedural
	reliability. Subtract a whole number from a whole number, each no
	larger than 100, with procedural reliability.
	Access Point
	MA.2.NSO.2.AP.3 Apply a strategy for adding and subtracting a
	two-digit number (from 11 to 19) and a single digit whole number.

MA.2.NSO.2.4	Explore the addition of two whole numbers with sums up to 1,000. Explore the subtraction of a whole number from a whole number,
	each no larger than 1,000.
	Access Point
	MA.2.NSO.2.AP.4 Explore the addition of a two-digit and a single-
	digit whole number with sums up to 100. Explore the subtraction of
	a one-digit from a two-digit whole number.

Fractions

MA.2.FR.1 Develop	MA.2.FR.1 Develop an understanding of fractions.	
MA.2.FR.1.1	Partition circles and rectangles into two, three or four equal-sized	
	parts. Name the parts using appropriate language, and describe the	
	whole as two halves, three thirds or four fourths.	
	Access Point	
	MA.2.FR.1.AP.1 Partition circles and rectangles into two, three or	
	four equal-sized parts. Recognize the parts of the whole as halves,	
	thirds or fourths. Explore the whole as two halves, three thirds or	
	four fourths.	
MA.2.FR.1.2	Partition rectangles into two, three or four equal-sized parts in two	
	different ways showing that equal-sized parts of the same whole	
	may have different shapes.	
	Access Point	
	MA.2.FR.1.AP.2 Partition rectangles into two or four equal-sized	
	parts in two different ways showing that equal-sized parts of the	
	same whole may have different shapes.	

Algebraic Reasoning

MA.2.AR.1 Solve addition problems with sums between 0 and 100 and related subtraction problems.		
MA.2.AR.1.1	Solve one- and two-step addition and subtraction real-world problems.	
	Access Point	
	MA.2.AR.1.AP.1 Solve one-step addition and subtraction real-	
	world problems within 20 using objects.	
MA.2.AR.2 Demons	MA.2.AR.2 Demonstrate an understanding of equality and addition and subtraction.	
MA.2.AR.2.1	Determine and explain whether equations involving addition and	
	subtraction are true or false.	
	Access Point	
	MA.2.AR.2.AP.1 Determine if addition or subtraction equations with no more than three terms are true or false. Sums may not exceed 20 and their related subtraction facts.	

MA.2.AR.2.2	Determine the unknown whole number in an addition or subtraction equation, relating three or four whole numbers, with the unknown in any position. Access Point MA.2.AR.2.AP.2 Determine the unknown whole number in an
	addition or subtraction equation, relating three whole numbers, with the change or result unknown (e.g., $7 + _ = 10$, $10 - 3 = \blacksquare$). Sums
	may not exceed 20 and their related subtraction facts.
MA.2.AR.3 Develop	an understanding of multiplication.
MA.2.AR.3.1	Represent an even number using two equal groups or two equal addends. Represent an odd number using two equal groups with one left over or two equal addends plus 1.
	Access Point MA.2.AR.3.AP.1 Explore the concept of odd and even by pairing
	objects to represent an even number using two equal groups or represent an odd number by using two equal groups with one left over. Group of objects may not exceed 20.
MA.2.AR.3.2	Use repeated addition to find the total number of objects in a collection of equal groups. Represent the total number of objects using rectangular arrays and equations.
	Access Point MA.2.AR.3.AP.2 Explore using repeated addition to find the total number of objects represented in a collection of equal groups (e.g., 3 groups of 2 objects) or in a rectangular array (e.g., 3 rows of 2
MA.2.AR.3.2	represent an odd number by using two equal groups with one left over. Group of objects may not exceed 20. Use repeated addition to find the total number of objects in a collection of equal groups. Represent the total number of objects using rectangular arrays and equations. Access Point MA.2.AR.3.AP.2 Explore using repeated addition to find the total number of objects represented in a collection of equal groups (e.g

MA.2.M.1 Measure	MA.2.M.1 Measure the length of objects and solve problems involving length.	
MA.2.M.1.1	Estimate and measure the length of an object to the nearest inch,	
	foot, yard, centimeter or meter by selecting and using an	
	appropriate tool.	
	Access Point	
	MA.2.M.1.AP.1.a Measure the length of an object to the nearest	
	inch, foot and or yard when given the appropriate tool.	
	MA.2.M.1.AP.1.b Explore estimation strategies by developing	
	measurement benchmarks of familiar objects that could be used to	
	make reasonable estimates of length to the nearest inch, foot, or	
	yard.	

MA.2.M.1.2	Measure the lengths of two objects using the same unit and
	determine the difference between their measurements.
	Access Point
	MA.2.M.1.AP.2 Measure the lengths of two objects using the same
	unit (i.e., inch, foot, yard) and determine the difference between
	their measurements.
MA.2.M.1.3	Solve one- and two-step real-world measurement problems
	involving addition and subtraction of lengths given in the same
	units.
	Access Point
	MA.2.M.1.AP.3 Solve one-step real-world measurement problems
	involving addition and subtraction of lengths within 20 given in the
	same unit (i.e., inch, foot, yard).
MA.2.M.2 Tell time	and solve problems involving money.
MA.2.M.2.1	Using analog and digital clocks, tell and write time to the nearest
	five minutes using a.m. and p.m. appropriately. Express portions of
	an hour using the fractional terms half an hour, half past, quarter of
	an hour, quarter after and quarter til.
	Access Point
	MA.2.M.2.AP.1 Using analog and digital clocks, express the time
	in hours and half hours. Explore the concept of a.m. and p.m.
MA.2.M.2.2	Solve one- and two-step addition and subtraction real-world
	problems involving either dollar bills within \$100 or coins within
	100¢ using \$ and ¢ symbols appropriately.
	Access Point
	MA.2.M.2.AP.2 Solve one-step addition and subtraction real-world
	problems involving either dollar bills within \$20 or coins within
	20ϕ . Explore using \$ for dollar bills and ϕ symbol for coins.

Geometric Reasoning

MA.2.GR.1 Ident symmetry.	ify and analyze two-dimensional figures and identify lines of
MA.2.GR.1.1	Identify and draw two-dimensional figures based on their defining attributes. Figures are limited to triangles, rectangles, squares, pentagons, hexagons and octagons.
	Access Point MA.2.GR.1.AP.1 Identify and produce two-dimensional figures when given defining attributes. Figures are limited to triangles, rectangles, hexagons and squares.
MA.2.GR.1.2	Categorize two-dimensional figures based on the number and length of sides, number of vertices, whether they are closed or not and whether the edges are curved or straight. Access Point MA.2.GR.1.AP.2 Sort two-dimensional figures based on the number of sides, number of vertices, whether they are closed or open and whether the sides are curved or straight.

MA.2.GR.1.3	Identify line(s) of symmetry for a two-dimensional figure.
	Access Point
	MA.2.GR.1.AP.3 Identify a line of symmetry for a two-dimensional
	figure.
MA.2.GR.2 Describ	e perimeter and find the perimeter of polygons.
MA.2.GR.2.1	Explore perimeter as an attribute of a figure by placing unit
	segments along the boundary without gaps or overlaps. Find
	perimeters of rectangles by counting unit segments.
	Access Point
	MA.2.GR.2.AP.1 Explore perimeter as an attribute of a figure that
	can be measured by placing unit segments along the boundary
	without gaps or overlaps. Find perimeters of rectangles by counting
	unit segments.
MA.2.GR.2.2	Find the perimeter of a polygon with whole-number side lengths.
	Polygons are limited to triangles, rectangles, squares and pentagons.
	Access Point
	MA.2.GR.2.AP.2 Find the perimeter of a polygon with whole-
	number side lengths given. Polygons are limited to triangles,
	rectangles and squares.

Data Analysis and Probability

MA.2.DP.1 Collect, labels and units.	categorize, represent and interpret data using appropriate titles,
MA.2.DP.1.1	Collect, categorize and represent data using tally marks, tables,
	pictographs or bar graphs. Use appropriate titles, labels and units.
	Access Point
	MA.2.DP.1.AP.1 Sort data into up to three categories and represent
	the results using tally marks, tables, pictographs or bar graphs.
	Align data with given title, labels and units.
MA.2.DP.1.2	Interpret data represented with tally marks, tables, pictographs or
	bar graphs including solving addition and subtraction problems.
	Access Point
	MA.2.DP.1.AP.2 Interpret data represented with tally marks, tables,
	pictographs or bar graphs to solve one-step put-together and take-
	apart problems. Pictograph symbols and bar graph intervals may
	only represent a quantity of 1.

Grade 3 B.E.S.T. Standards Access Points

MA.3.NSO.1 Understand the place value of four-digit numbers.	
MA.3.NSO.1.1	Read and write numbers from 0 to 10,000 using standard form,
	expanded form and word form.
	Access Point
	MA.3.NSO.1.AP.1 Read and generate numbers from 0 to 1,000
	using standard form and expanded form.
MA.3.NSO.1.2	Compose and decompose four-digit numbers in multiple ways using
	thousands, hundreds, tens and ones. Demonstrate each composition
	or decomposition using objects, drawings, and expressions or
	equations.
	Access Point
	MA.3.NSO.1.AP.2 Compose and decompose three-digit numbers
	using hundreds, tens and ones. Demonstrate each composition or
	decomposition with objects, drawings, expressions or equations.
MA.3.NSO.1.3	Plot, order and compare whole numbers up to 10,000.
	Access Point
	MA.3.NSO.1.AP.3 Plot, order and compare whole numbers up to
	1,000.
MA.3.NSO.1.4	Round whole numbers from 0 to 1,000 to the nearest 10 or 100.
	Access Point
	MA.3.NSO.1.AP.4 Round whole numbers from 0 to 1,000 to the
	nearest 100 with visual support.
MA.3.NSO.2 Add ar	nd subtract multi-digit whole numbers. Build an understanding of
multiplication and d	livision operations.
MA.3.NSO.2.1	Add and subtract multi-digit whole numbers including using a
	standard algorithm with procedural fluency.
	Access Point
	MA.3.NSO.2.AP.1 Apply a strategy to add and subtract two two-
	digit whole numbers.
MA.3.NSO.2.2	Explore multiplication of two whole numbers with products from 0
	to 144, and related division facts.
	Access Point
	MA.3.NSO.2.AP.2 Explore the concept of multiplication of two
	single-digit whole numbers using objects.
MA.3.NSO.2.3	Multiply a one-digit whole number by a multiple of 10, up to 90, or
	a multiple of 100, up to 900, with procedural reliability.
	Access Point
	MA.3.NSO.2.AP.3 Explore multiplying a one-digit whole number
	by 10.

MA.3.NSO.2.4	Multiply two whole numbers from 0 to 12 and divide using related facts with procedural reliability.
	Access Point MA.3.NSO.2.AP.4 Explore the relationship between multiplication and division in order to multiply and divide. Multiplication may not exceed two single-digit whole numbers and their related division facts.

	Fractions
MA.3.FR.1 Underst	tand fractions as numbers and represent fractions.
MA.3.FR.1.1	Represent and interpret unit fractions in the form $\frac{1}{n}$ as the quantity
	formed by one part when a whole is partitioned into n equal parts.
	Access Point
	MA.3.FR.1.AP.1 Explore unit fractions in the form $\frac{1}{n}$ as the quantity
	formed by one part when a whole is partitioned into n equal parts. Denominators are limited to 2, 3 and 4.
MA.3.FR.1.2	Represent and interpret fractions, including fractions greater than
	one, in the form of $\frac{m}{n}$ as the result of adding the unit fraction $\frac{1}{n}$ to
	itself <i>m</i> times.
	Access Point
	MA.3.FR.1.AP.2 Explore fractions, less than or equal to a whole, in
	the form of $\frac{m}{n}$ as the result of adding the unit fraction $\frac{1}{n}$ to itself m
	times. Denominators are limited to 2, 3 and 4.
MA.3.FR.1.3	Read and write fractions, including fractions greater than one, using
	standard form, numeral-word form and word form.
	Access Point
	MA.3.FR.1.AP.3 Read and generate fractions, less than or equal to a
MASED 2 Ondon a	whole, using standard form. <i>nd compare fractions and identify equivalent fractions.</i>
MA.3.FR.2.1	Plot, order and compare fractional numbers with the same
WIA.J.I K.Z.I	numerator or the same denominator.
	Access Point
	MA.3.FR.2.AP.1 Compare fractional numbers with the same
	denominator. Denominators are limited to 2, 3 and 4.
MA.3.FR.2.2	Identify equivalent fractions and explain why they are equivalent.
	Access Point
	MA.3.FR.2.AP.2 Using a visual model, recognize fractions less
	than a whole that are equivalent to fractions with denominators of 2, $\frac{1}{2}$
	3 or 4 (e.g., $\frac{4}{8}$ is equivalent to $\frac{1}{2}$).

	Algebraic Reasoning	
MA.3.AR.1 Solve m	ultiplication and division problems.	
MA.3.AR.1.1	Apply the distributive property to multiply a one-digit number and	
	two-digit number. Apply properties of multiplication to find a	
	product of one-digit whole numbers.	
	Access Point	
	MA.3.AR.1.AP.1 Apply the commutative property of multiplication	
	to find a product of one-digit whole numbers.	
MA.3.AR.1.2	Solve one- and two-step real-world problems involving any of four	
	operations with whole numbers.	
	Access Point	
	MA.3.AR.1.AP.2a Solve one- and two-step addition and subtraction	
	real-world problems within 100.	
	MA.3.AR.1.AP.2b Solve one-step multiplication and division real-	
	world problems. Multiplication may not exceed two single-digit	
	whole numbers and their related division facts.	
MA 3 AR 2 Develor	an understanding of equality and multiplication and division.	
MA.3.AR.2.1	Restate a division problem as a missing factor problem using the	
	relationship between multiplication and division.	
	Access Point	
	MA.3.AR.2.AP.1 Explore division as multiplication with a missing	
	factor using the relationship between multiplication and division.	
MA.3.AR.2.2	Determine and explain whether an equation involving	
	multiplication or division is true or false.	
	Access Point	
	MA.3.AR.2.AP.2 Determine if multiplication or division equations	
	with no more than three terms are true or false. Multiplication may	
	not exceed two single-digit whole numbers and their related	
	division facts.	
MA.3.AR.2.3	Determine the unknown whole number in a multiplication or	
	division equation, relating three whole numbers, with the unknown	
	in any position.	
	Access Point	
	MA.3.AR.2.AP.3 Determine the unknown whole number in a	
	multiplication or division equation, relating three whole numbers,	
	with the product or quotient unknown (e.g., $2 \times 5 = 10 \div 5 = 10$	
). Multiplication may not exceed two single-digit whole numbers	
	and their related division facts.	
MA.3.AR.3 Identify	numerical patterns, including multiplicative patterns.	
MA.3.AR.3.1	Determine and explain whether a whole number from 1 to 1,000 is	
	even or odd.	
	Access Point	
	MA.3.AR.3.AP.1 Determine whether a whole number from 1 to	
	100 is even or odd.	

MA.3.AR.3.2	Determine whether a whole number from 1 to 144 is a multiple of a given one-digit number.
	Access Point
	MA.3.AR.3.AP.2 Explore that a whole number is a multiple of each
	of its factors. Factors not to exceed single-digit whole numbers.
MA.3.AR.3.3	Identify, create and extend numerical patterns.
	Access Point
	MA.3.AR.3.AP.3 Extend a numerical pattern when given a one-step
	addition rule (e.g., when given the pattern 5, 10, 15, use the rule add
	5 to extend the pattern).

Measurement

MA.3.M.1 Measure	e attributes of objects and solve problems involving measurement.
MA.3.M.1.1	Select and use appropriate tools to measure the length of an object,
	the volume of liquid within a beaker and temperature.
	Access Point
	MA.3.M.1.AP.1a Select and use appropriate tools to measure the
	length (i.e., inches, feet, yards) of an object.
	MA.3.M.1.AP.1b Explore selecting and using appropriate tools to
	measure liquid volume (i.e., gallons, quarts, pints, cups) and
	temperature in degrees Fahrenheit.
MA.3.M.1.2	Solve real-world problems involving any of the four operations with
	whole-number lengths, masses, weights, temperatures or liquid
	volumes.
	Access Point
	MA.3.M.1.AP.2a Solve one- and two-step addition and subtraction
	real-world problems within 100 with whole number lengths (i.e.,
	inches, feet, yards), temperatures (i.e., degrees Fahrenheit) or liquid
	volumes (i.e., gallons, quarts, pints, cups).
	MA.3.M.1.AP.2b Solve one-step multiplication and division real-
	world problems with whole number lengths (i.e., inches, feet,
	yards), temperatures (i.e., degrees Fahrenheit) or liquid volumes
	(i.e., gallons, quarts, pints and cups). Multiplication may not exceed
	two single-digit whole numbers and their related division facts.
	write time and solve problems involving time.
MA.3.M.2.1	Using analog and digital clocks, tell and write time to the nearest
	minute using a.m. and p.m. appropriately.
	Access Point
	MA.3.M.2.AP.1 Using analog and digital clocks, express the time
	to the nearest five minutes using a.m. and p.m. appropriately.
MA.3.M.2.2	Solve one- and two-step real-world problems involving elapsed
	time.
	Access Point
	MA.3.M.2.AP.2 Solve for end time in one-step real-world problems
	when given start time and elapsed time in whole hours or minutes
	within the hour.

MA 3 GR 1 Descri	be and identify relationships between lines and classify
quadrilaterals.	be and menugy relationships between times and classify
MA.3.GR.1.1	Describe and draw points, lines, line segments, rays, intersecting lines, perpendicular lines and parallel lines. Identify these in two-dimensional figures.
	Access Point
	MA.3.GR.1.AP.1 Identify points, lines, line segments,
	perpendicular lines and parallel lines. Identify these in two-
	dimensional figures.
MA.3.GR.1.2	Identify and draw quadrilaterals based on their defining attributes.
	Quadrilaterals include parallelograms, rhombi, rectangles, squares
	and trapezoids.
	Access Point
	MA.3.GR.1.AP.2 Identify quadrilaterals based on their defining
	attributes. Quadrilaterals include parallelograms, rhombi,
	rectangles, squares and trapezoids.
MA.3.GR.1.3	Draw line(s) of symmetry in a two-dimensional figure and identify
	line-symmetric two-dimensional figures.
	Access Point
	MA.3.GR.1.AP.3 Identify line-symmetric two-dimensional figures.
	problems involving the perimeter and area of rectangles.
MA.3.GR.2.1	Explore area as an attribute of a two-dimensional figure by covering the figure with unit squares without gaps or overlaps. Find areas of rectangles by counting unit squares.
	Access Point
	MA.3.GR.2.AP.1 Explore area as an attribute of a two-dimensional
	figure that can be measured by covering the figure with unit squares
	without gaps or overlaps.
MA.3.GR.2.2	Find the area of a rectangle with whole-number side lengths using a visual model and a multiplication formula.
	Access Point
	MA.3.GR.2.AP.2 Find the area of a rectangle with whole-number
	side lengths by counting unit squares. Explore that the area is the
	same as what would be found by multiplying the side lengths.
MA.3.GR.2.3	Solve mathematical and real-world problems involving the
1111.5.010.2.5	perimeter and area of rectangles with whole-number side lengths
	using a visual model and a formula.
	Access Point
	MA.3.GR.2.AP.3 Solve mathematical and real-world problems
	involving the perimeter and area of rectangles with whole-number
1	side lengths using a visual model.

Geometric Reasoning

MA.3.GR.2.4	Solve mathematical and real-world problems involving the perimeter and area of composite figures composed of non- overlapping rectangles with whole-number side lengths.
	Access Point MA.3.GR.2.AP.4 Explore the perimeter and area of composite figures composed of two non-overlapping rectangles with whole- number side lengths.

Data Analysis and Probability

	represent and interpret numerical and categorical data.
MA.3.DP.1.1	Collect and represent numerical and categorical data with whole-
	number values using tables, scaled pictographs, scaled bar graphs or
	line plots. Use appropriate titles, labels and units.
	Access Point
	MA.3.DP.1.AP.1a Sort and represent categorical data (up to four
	categories) with whole-number values using tables, pictographs or bar
	graphs. Select appropriate title, labels and units.
	MA.3.DP.1.AP.1b Explore representing numerical data with whole-
	number values using line plots.
MA.3.DP.1.2	Interpret data with whole-number values represented with tables,
	scaled pictographs, circle graphs, scaled bar graphs or line plots by
	solving one- and two-step problems.
	Access Point
	MA.3.DP.1.AP.2a Interpret data with whole-number values
	represented with tables, pictographs or bar graphs to solve one-step
	"how many more" and "how many less" problems.
	MA.3.DP.1.AP.2b Interpret data with whole-number values
	represented with scaled pictographs or scaled bar graphs. For scaled
	pictographs, symbols used may only represent quantities of 2, 5 or
	10 and only whole symbols may be used. For scaled bar graphs,
	intervals may only represent quantities of 2, 5 or 10.
	MA.3.DP.1.AP.2c Explore interpreting data with whole-number
	values represented with line plots.

Grade 4 B.E.S.T. Standards Access Points

MA.4.NSO.1 Unders	stand place value for multi-digit numbers.
MA.4.NSO.1.1	Express how the value of a digit in a multi-digit whole number
	changes if the digit moves one place to the left or right.
	Access Point
	MA.4.NSO.1.AP.1 Explore how the value of a digit in a multi-digit
	whole number changes if the digit moves one place to the left.
MA.4.NSO.1.2	Read and write multi-digit whole numbers from 0 to 1,000,000
	using standard form, expanded form and word form.
	Access Point
	MA.4.NSO.1.AP.2 Read and generate numbers from 0 to 10,000
	using standard form and expanded form.
MA.4.NSO.1.3	Plot, order and compare multi-digit whole numbers up to 1,000,000.
	Access Point
	MA.4.NSO.1.AP.3 Plot, order and compare multi-digit whole
	numbers up to 10,000.
MA.4.NSO.1.4	Round whole numbers from 0 to 10,000 to the nearest 10, 100 or
	1,000.
	Access Point
	MA.4.NSO.1.AP.4 Round whole numbers from 100 to 10,000 to
	the nearest 1,000 with visual support.
MA.4.NSO.1.5	Plot, order and compare decimals up to the hundredths.
	Access Point
	MA.4.NSO.1.AP.5 Using visual models, compare decimals less
MAANGO 2 Build	than one up to the hundredths.
decimals.	in understanding of operations with multi-digit numbers including
MA.4.NSO.2.1	Recall multiplication facts with factors up to 12 and related division
	facts with automaticity.
	Access Point
	MA.4.NSO.2.AP.1 Recall multiplication facts of one-digit whole
	numbers multiplied by 1, 2, 5 and 10.
MA.4.NSO.2.2	Multiply two whole numbers, up to three digits by up to two digits,
	with procedural reliability.
	Access Point
	MA.4.NSO.2.AP.2 Explore multiplication of two whole numbers,
	up to two digits by one digit.
MA.4.NSO.2.3	Multiply two whole numbers, each up to two digits, including using
	a standard algorithm with procedural fluency.
	Access Point
	MA.4.NSO.2.AP.3 Apply a strategy to multiply two whole numbers
	up to two digits by one digit.

MA.4.NSO.2.4	Divide a whole number up to four digits by a one-digit whole	
	number with procedural reliability. Represent remainders as	
	fractional parts of the divisor.	
	Access Point	
	MA.4.NSO.2.AP.4 Explore division of two whole numbers up to	
	two digits by one digit with and without remainders. Represent	
	remainders as whole numbers.	
MA.4.NSO.2.5	Explore the multiplication and division of multi-digit whole	
	numbers using estimation, rounding and place value.	
	Access Point	
	MA.4.NSO.2.AP.5 Explore the estimation of products and quotients	
	of two whole numbers up to two digits by one digit.	
MA.4.NSO.2.6	Identify the number that is one-tenth more, one-tenth less, one-	
	hundredth more and one-hundredth less than a given number.	
	Access Point	
	MA.4.NSO.2.AP.6 Identify the number that is one-tenth more and	
	one-tenth less than a given number (i.e., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,	
	0.7, 0.8, 0.9).	
MA.4.NSO.2.7	Explore the addition and subtraction of multi-digit numbers with	
	decimals to the hundredths.	
	Access Point	
	MA.4.NSO.2.AP.7 Explore the addition and subtraction of decimals	
	less than one to the tenths (e.g., $0.3 + 0.5$) and hundredths (e.g.,	
	0.25 - 0.12).	

Fractions

MA 4 FR 1 Develop	an understanding of the relationship between different fractions
and the relationship between fractions and decimals.	
MA.4.FR.1.1	Model and express a fraction, including mixed numbers and
	fractions greater than one, with the denominator 10 as an equivalent
	fraction with the denominator 100.
	Access Point
	MA.4.FR.1.AP.1 Using a visual model, recognize fractions less
	than one, with the denominator 10 as
	an equivalent fraction with the denominator 100
	(e.g., $\frac{2}{10}$ is equivalent to $\frac{20}{100}$).
MA.4.FR.1.2	Use decimal notation to represent fractions with denominators of 10
	or 100, including mixed numbers and fractions greater than 1, and
	use fractional notation with denominators of 10 or 100 to represent
	decimals.
	Access Point
	MA.4.FR.1.AP.2 Use decimal notation to represent fractions less
	than one with denominators of 10 or 100 and use fractional notation
	with denominators of 10 or 100 to represent decimals less than one.

MA.4.FR.1.3	Identify and generate equivalent fractions, including fractions	
	greater than one. Describe how the numerator and denominator are	
	affected when the equivalent fraction is created.	
	Access Point	
	MA.4.FR.1.AP.3 Using a visual model, generate fractions less than	
	a whole that are equivalent to fractions with denominators 2, 3, 4, 6,	
	8 or 10. Explore how the numerator and denominator are affected	
	when the equivalent fraction is created.	
MA.4.FR.1.4	Plot, order and compare fractions, including mixed numbers and	
	fractions greater than one, with different numerators and different	
	denominators.	
	Access Point	
	MA.4.FR.1.AP.4a Explore mixed numbers and fractions greater	
	than one.	
	MA.4.FR.1.AP.4b Using visual models, compare fractions less than	
	one with different numerators and different denominators.	
	Denominators limited to 2, 3, 4, 6, 8 or 10.	
MA.4.FR.2 Build a	foundation of addition, subtraction and multiplication operations	
with fractions.		
MA.4.FR.2.1	Decompose a fraction, including mixed numbers and fractions	
	greater than one, into a sum of fractions with the same denominator	
	in multiple ways. Demonstrate each decomposition with objects,	
	drawings and equations.	
	Access Point	
	MA.4.FR.2.AP.1 Decompose a fraction less than one into a sum of	
	unit fractions with the same denominator	
	(e.g., $\frac{3}{4} = \frac{1}{4} + \frac{1}{4} + \frac{1}{4}$). Denominators limited to 2, 3, 4, 6, 8 or 10.	
	Demonstrate each decomposition with objects, drawings or	
	equations.	
MA.4.FR.2.2	Add and subtract fractions with like denominators, including mixed	
	numbers and fractions greater than one, with procedural reliability.	
	Access Point	
	MA.4.FR.2.AP.2 Explore adding and subtracting fractions less than	
	one with like denominators. Denominators limited to 2, 3, 4, 6, 8 or	
MA.4.FR.2.3	Explore the addition of a fraction with denominator of 10 to a	
	fraction with denominator of 100 using equivalent fractions.	
	Access Point	
	MA.4.FR.2.AP.3 Explore the addition of a fraction with	
	denominator of 10 to a fraction with denominator of 100 using	
	visual models to find equivalent fractions.	

MA.4.FR.2.4	Extend previous understanding of multiplication to explore the multiplication of a fraction by a whole number or a whole number by a fraction.
	Access Point MA.4.FR.2.AP.4 Explore the multiplication of a unit fraction by a whole number (e.g., $3 \times \frac{1}{4}$, $2 \times \frac{1}{6}$, $5 \times \frac{1}{2}$). Denominators limited to 2, 3, 4, 6, 8 or 10.

Algebraic Reasoning

MA.4.AR.1 Repres	ent and solve problems involving the four operations with whole
numbers and fracti	
MA.4.AR.1.1	Solve real-world problems involving multiplication and division of whole numbers including problems in which remainders must be interpreted within the context.
	Access Point
	MA.4.AR.1.AP.1 Solve one-step real-world problems involving multiplication and division of whole numbers. Multiplication may not exceed two-digit by one-digit and division must be related to one-digit by one-digit multiplication facts.
MA.4.AR.1.2	Solve real-world problems involving addition and subtraction of fractions with like denominators, including mixed numbers and fractions greater than one.
	Access Point
	MA.4.AR.1.AP.2 Solve one-step real-world problems involving addition and subtraction of fractions less than one with like denominators. Denominators limited to 2, 3, 4, 6, 8 or 10.
MA.4.AR.1.3	Solve real-world problems involving multiplication of a fraction by a whole number or a whole number by a fraction.
	Access Point
	MA.4.AR.1.AP.3 Solve one-step real-world problems involving
	multiplication of a unit fraction by a whole number (e.g., $3 \times \frac{1}{4}$, $2 \times$
	$\frac{1}{6}$, 5 × $\frac{1}{2}$). Denominators limited to 2, 3, 4, 6, 8 or 10.
MA.4.AR.2 Demon	strate an understanding of equality and operations with whole
numbers.	
MA.4.AR.2.1	Determine and explain whether an equation involving any of the four operations with whole numbers is true or false.
	Access Point
	MA.4.AR.2.AP.1 Determine whether an equation (with no more than three terms) involving any of the four operations with whole numbers is true or false. Sums may not exceed 100 and their related subtraction facts. Multiplication may not exceed two-digit by one- digit and division must be related to one-digit by one-digit multiplication facts

MA.4.AR.2.2	Given a mathematical or real-world context, write an equation		
	involving multiplication or division to determine the unknown		
	whole number with the unknown in any position.		
	Access Point		
	MA.4.AR.2.AP.2 Given a real-world context, identify or generate		
	an equation involving multiplication or division to determine the		
	unknown product or quotient. Multiplication may not exceed two-		
	digit by one-digit and division must be related to one-digit by one-		
	digit multiplication facts		
MA.4.AR.3 Recogni	ecognize numerical patterns, including patterns that follow a given rule.		
MA.4.AR.3.1	Determine factor pairs for a whole number from 0 to 144.		
	Determine whether a whole number from 0 to 144 is prime,		
	composite or neither.		
	Access Point		
	MA.4.AR.3.AP.1 Explore factor pairs for a whole number. Factors		
	may not exceed single-digit whole numbers.		
MA.4.AR.3.2	Generate, describe and extend a numerical pattern that follows a		
	given rule.		
	Access Point		
	MA.4.AR.3.AP.2 Generate a numerical pattern when given a		
	starting term and a one-step addition rule (e.g., starting at the		
	number 5 use the rule add 5 and generate the pattern).		
	·		

Measurement

MA.4.M.1 Measure	MA.4.M.1 Measure the length of objects and solve problems involving measurement.	
MA.4.M.1.1	Select and use appropriate tools to measure attributes of objects.	
	Access Point	
	MA.4.M.1.AP.1a Select and use appropriate tools to measure length	
	(i.e., inches, feet, yards), liquid volume (i.e., gallons, quarts, pints,	
	cups) and temperature (i.e., degrees Fahrenheit).	
	MA.4.M.1.AP.1b Explore selecting and using appropriate tools to	
	measure weight (i.e., ounces, pounds).	
MA.4.M.1.2	Convert within a single system of measurement using the units:	
	yards, feet, inches; kilometers, meters, centimeters, millimeters;	
	pounds, ounces; kilograms, grams; gallons, quarts, pints, cups; liter,	
	milliliter; and hours, minutes, seconds.	
	Access Point	
	MA.4.M.1.AP.2a Explore relative sizes of measurement units	
	within one system of units including yards, feet, inches; pounds,	
	ounces; gallons, quarts, pints, cups; and hours, minutes.	
	MA.4.M.1.AP.2b Using a conversion sheet, convert from a larger to	
	a smaller unit within a single system of measurement using the	
	units: yards, feet, inches; pounds, ounces; gallons, quarts, pints,	
	cups; and hours, minutes. Only whole number measurements may	
	be used.	

MA.4.M.2 Solve pro	blems involving time and money.
MA.4.M.2.1	Solve two-step real-world problems involving distances and
	intervals of time using any combination of the four operations.
	Access Point
	MA.4.M.2.AP.1a Solve one- and two-step real-world problems
	involving distances (i.e., inches, feet, yards, miles) in whole
	numbers using any combination of the four operations.
	MA.4.M.2.AP.1b Solve one-step real-world problems involving
	intervals of time in whole numbers using any of the four operations.
MA.4.M.2.2	Solve one- and two-step addition and subtraction real-world
	problems involving money using decimal notation.
Access Point	
	MA.4.M.2.AP.2 Solve one- and two-step addition and subtraction
	real-world problems involving money using decimal notation. Sums
	not to exceed \$0.99 and their related subtraction facts.

Geometric	Reasoning
Groundlin	ICCasoning

ght
gin
/0-
tive.
les
t or
n
ne
ng
0

MA.4.GR.2 Solve pr	MA.4.GR.2 Solve problems involving the perimeter and area of rectangles.	
MA.4.GR.2.1	Solve perimeter and area mathematical and real-world problems,	
	including problems with unknown sides, for rectangles with whole-	
	number side lengths.	
	Access Point	
	MA.4.GR.2.AP.1 Solve perimeter and area mathematical and real-	
	world problems for rectangles with given whole-number side	
	lengths.	
MA.4.GR.2.2	Solve problems involving rectangles with the same perimeter and	
	different areas or with the same area and different perimeters.	
	Access Point	
	MA.4.GR.2.AP.2 Explore the relationship between perimeter and	
	area using rectangles with the same perimeter and different areas or	
	with the same area and different perimeters.	

Data Analysis and Probability

MA.4.DP.1 Collect,	MA.4.DP.1 Collect, represent and interpret data and find the mode, median and range	
of a data set.		
MA.4.DP.1.1	Collect and represent numerical data, including fractional values,	
	using tables, stem-and-leaf plots or line plots.	
	Access Point	
	MA.4.DP.1.AP.1 Sort and represent numerical data, including	
	fractional values using tables or line plots (when given a scaled	
	number line). Data set to include only whole numbers and halves.	
MA.4.DP.1.2	Determine the mode, median or range to interpret numerical data	
	including fractional values, represented with tables, stem-and-leaf	
	plots or line plots.	
	Access Point	
	MA.4.DP.1.AP.2 Determine the mode or range to interpret	
	numerical data including fractional values, represented with tables	
	or line plots. Data set to include only whole numbers and halves.	
	Limit the greatest and least number in a data set to a whole number.	
MA.4.DP.1.3	Solve real-world problems involving numerical data.	
	Access Point	
	MA.4.DP.1.AP.3 Solve one-step real-world problems involving	
	numerical data represented with tables or line plots. Data set to	
	include only whole numbers and halves. Required operations to	
	involve only the whole number data points in the data set.	

Grade 5 B.E.S.T. Standards Access Points

MA.5.NSO.1 Unders	stand the place value of multi-digit numbers with decimals to the
thousandths place.	
MA.5.NSO.1.1	Express how the value of a digit in a multi-digit number with decimals to the thousandths changes if the digit moves one or more places to the left or right.
	Access Point MA.5.NSO.1.AP.1 Explore how the value of a digit in a multi-digit number with decimals to the hundredths changes if the digit moves one place to the left. Multi-digit numbers not to exceed 9.99.
MA.5.NSO.1.2	Read and write multi-digit numbers with decimals to the thousandths using standard form, word form and expanded form.
	Access Point MA.5.NSO.1.AP.2 Read and generate multi-digit numbers with decimals to the hundredths using standard form and expanded form. Multi-digit numbers not to exceed 9.99.
MA.5.NSO.1.3	Compose and decompose multi-digit numbers with decimals to the thousandths in multiple ways using the values of the digits in each place. Demonstrate the compositions or decompositions using objects, drawings and expressions or equations.
	Access Point MA.5.NSO.1.AP.3 Compose and decompose multi-digit numbers with decimals to the hundredths. Demonstrate each composition or decomposition with objects, drawings, expressions or equations. Multi-digit numbers not to exceed 9.99.
MA.5.NSO.1.4	Plot, order and compare multi-digit numbers with decimals up to the thousandths.
	Access Point MA.5.NSO.1.AP.4 Plot, order and compare multi-digit numbers with decimals up to the hundredths. Multi-digit numbers not to exceed 9.99.
MA.5.NSO.1.5	Round multi-digit numbers with decimals to the thousandths to the nearest hundredth, tenth or whole number.
	Access Point MA.5.NSO.1.AP.5 Round multi-digit numbers with decimals to the tenths to the nearest whole number (e.g., 1.7 rounds to 2); and numbers with decimals to the hundredths to the nearest tenth (e.g., 2.36 rounds to 2.4). Multi-digit numbers not to exceed 9.99.
MA.5.NSO.2 Add, st	ubtract, multiply and divide multi-digit numbers.
MA.5.NSO.2.1	Multiply multi-digit whole numbers including using a standard algorithm with procedural fluency.
	Access Point MA.5.NSO.2.AP.1 Explore multiplication of two whole numbers, up to two digits by two digits.

MA.5.NSO.2.2	Divide multi-digit whole numbers, up to five digits by two digits,
	including using a standard algorithm with procedural fluency.
	Represent remainders as fractions.
	Access Point
	MA.5.NSO.2.AP.2 Apply a strategy to divide two whole numbers
	up to two digits by one digit, including the possibility of whole
	number remainders.
MA.5.NSO.2.3	Add and subtract multi-digit numbers with decimals to the
	thousandths, including using a standard algorithm with procedural
	fluency.
	Access Point
	MA.5.NSO.2.AP.3 Apply a strategy to add and subtract multi-digit
	numbers with decimals to the tenths (e.g., $3.3 + 0.5$) and hundredths
	(e.g., $1.25 - 0.12$). Multi-digit numbers not to exceed 9.99.
MA.5.NSO.2.4	Explore the multiplication and division of multi-digit numbers with
	decimals to the hundredths using estimation, rounding and place
	value.
	Access Point
	MA.5.NSO.2.AP.4 Explore the estimation of products and quotients
	of two multi-digit numbers with decimals to the tenths (e.g., $8.9 \times$
	2.3 becomes 9×2 by rounding both factors to the nearest whole
	number). Multi-digit numbers not to exceed 9.9.
MA.5.NSO.2.5	Multiply and divide a multi-digit number with decimals to the
	tenths by one- tenth and one-hundredth with procedural reliability.
	Access Point
	MA.5.NSO.2.AP.5 Explore multiplying and dividing single-digit
	whole numbers by one-tenth and one-hundredth.

111			
Fr	ac	t10	ns

MA.5.FR.1 Interpret a fraction as an answer to a division problem.		
MA.5.FR.1.1	Given a mathematical or real-world problem, represent the division	
	of two whole numbers as a fraction.	
	Access Point	
	MA.5.FR.1.AP.1 Explore the connection between fractions and	
	division in a real-world problem.	

MA.5.FR.2 Perfo	rm operations with fractions.
MA.5.FR.2.1	Add and subtract fractions with unlike denominators, including mixed numbers and fractions greater than 1, with procedural reliability.
	Access Point
	MA.5.FR.2.AP.1a Explore adding and subtracting mixed numbers and fractions greater than 1 with like denominators.
	MA.5.FR.2.AP.1b Explore adding and subtracting fractions less than one with unlike denominators
	where one denominator is a multiple of the other
	$(e.g., \frac{1}{2} + \frac{3}{4}, \frac{2}{3} - \frac{1}{6}).$
MA.5.FR.2.2	Extend previous understanding of multiplication to multiply a
	fraction by a fraction, including mixed numbers and fractions
	greater than 1, with procedural reliability.
	Access Point
	MA.5.FR.2.AP.2 Explore multiplying a unit fraction by a unit
	fraction.
MA.5.FR.2.3	When multiplying a given number by a fraction less than 1 or a fraction greater than 1, predict and explain the relative size of the product to the given number without calculating.
	Access Point
	MA.5.FR.2.AP.3 Explore the impact on the size of the product
	when multiplying a given number by a fraction less than 1 or by a whole number.
MA.5.FR.2.4	Extend previous understanding of division to explore the division of a unit fraction by a whole number and a whole number by a unit
	fraction.
	Access Point
	MA.5.FR.2.AP.4 Explore the division of a one-digit whole number by a unit fraction. Denominators are limited to 2, 3 or 4.

Algebraic Reasoning

MA.5.AR.1 Solve fractions.	problems involving the four operations with whole numbers and
MA.5.AR.1.1	 Solve multi-step real-world problems involving any combination of the four operations with whole numbers, including problems in which remainders must be interpreted within the context. Access Point MA.5.AR.1.AP.1 Solve one- and two-step real-world problems involving any combination of the four operations with whole numbers. Explore problems in which remainders must be interpreted within the context.

MA.5.AR.1.2	Solve real-world problems involving the addition, subtraction or
	multiplication of fractions, including mixed numbers and fractions
	greater than 1.
	Access Point
	MA.5.AR.1.AP.2a Solve one-step real-world problems involving
	addition and subtraction of mixed numbers and fractions greater
	than one with like denominators.
	MA.5.AR.1.AP.2b Solve one-step real-world problems involving
	multiplication of unit fractions.
MA.5.AR.1.3	Solve real-world problems involving division of a unit fraction by a
	whole number and a whole number by a unit fraction.
	Access Point
	MA.5.AR.1.AP.3 Solve one-step real-world problems involving
	division of a whole number by a unit fraction.
MA.5.AR.2 Demons	trate an understanding of equality, the order of operations and
equivalent numerica	
MA.5.AR.2.1	Translate written real-world and mathematical descriptions into
	numerical expressions and numerical expressions into written
	mathematical descriptions.
	Access Point
	MA.5.AR.2.AP.1 Translate mathematical descriptions (e.g., five
	plus two; the product of three and four) into numerical expressions
	with two terms.
MA.5.AR.2.2	Evaluate multi-step numerical expressions using order of
	operations.
	Access Point
	MA.5.AR.2.AP.2 Evaluate an expression containing three terms
	and one set of parentheses.
MA.5.AR.2.3	Determine and explain whether an equation involving any of the
	four operations is true or false.
	Access Point
	MA.5.AR.2.AP.3 Determine whether an equation (with no more
	than four terms and up to one set of parentheses) involving any of
	the four operations with whole numbers is true or false. Limit
	addition and subtraction to within 100 and limit multiplication and
	division to the products of two single-digit whole numbers and their
	related division facts.
MA.5.AR.2.4	Given a mathematical or real-world context, write an equation
	involving any of the four operations to determine the unknown
	whole number with the unknown in any position.
	Access Point
	MA.5.AR.2.AP.4 Given a mathematical or real-world context,
	generate an equation involving any of the four operations to
	determine the unknown sum, difference, product or quotient. Sums
	may not exceed 100 and their related subtraction facts. Multiplication and division may not exceed two digit by one digit.

MA.5.AR.3 Analyze	MA.5.AR.3 Analyze patterns and relationships between inputs and outputs.	
MA.5.AR.3.1	Given a numerical pattern, identify and write a rule that can	
	describe the pattern as an expression.	
	Access Point	
	MA.5.AR.3.AP.1 Given a numerical pattern, identify a one-step	
	rule that can describe the pattern.	
MA.5.AR.3.2	Given a rule for a numerical pattern, use a two-column table to	
	record the inputs and outputs.	
	Access Point	
	MA.5.AR.3.AP.2 Given the inputs and a one-step addition or	
	subtraction rule for a numerical pattern, use a two-column table to	
	record the outputs.	

Measurement

Measurement		
MA.5.M.1 Convert measurement units to solve multi-step problems.		
MA.5.M.1.1	Solve multi-step real-world problems that involve converting	
	measurement units to equivalent measurements within a single	
	system of measurement.	
	Access Point	
	MA.5.M.1.AP.1a Using a conversion sheet, convert within a single	
	system of measurement using the units: miles, yards, feet, inches;	
	pounds, ounces; gallons, quarts, pints, cups; and hours, minutes.	
	Only whole number measurements may be used.	
	MA.5.M.1.AP.1b Using a conversion sheet, solve one-and two-step	
	real-world problems that involve converting measurement units	
	(i.e., miles, yards, feet, inches; pounds, ounces; gallons, quarts,	
	pints, cups; and hours, minutes) to equivalent measurements within	
	a single system of measurement. Only whole number measurements	
	may be used.	
MA.5.M.2 Solve pro	MA.5.M.2 Solve problems involving money.	
MA.5.M.2.1	Solve multi-step real-world problems involving money using	
	decimal notation.	
	Access Point	
	MA.5.M.2.AP.1 Solve one- and two-step addition and subtraction	
	real-world problems involving money using decimal notation with	
	all terms less than \$20.00 (e.g., \$11.74 + \$5.31, \$10.99 - \$3.26).	

MA 5 GR 1 Classif	y two-dimensional figures and three-dimensional figures based on
	y two-almensional jigures and inree-almensional jigures based on
<i>defining attributes.</i>	
MA.5.GR.1.1	Classify triangles or quadrilaterals into different categories based on
	shared defining attributes. Explain why a triangle or quadrilateral
	would or would not belong to a category.
	Access Point
	MA.5.GR.1.AP.1a Sort triangles into different categories based on
	the size of their angles. Triangles include acute, obtuse and right.
	MA.5.GR.1.AP.1b Sort quadrilaterals into different categories
	based on shared defining attributes. Explore why a quadrilateral
	would or would not belong to a category. Quadrilaterals include
	parallelograms, rhombi, rectangles, squares and trapezoids.
MA.5.GR.1.2	Identify and classify three-dimensional figures into categories based
	on their defining attributes. Figures are limited to right pyramids,
	right prisms, right circular cylinders, right circular cones and
	spheres.
	Access Point
	MA.5.GR.1.AP.2 Identify and sort three-dimensional figures into
	categories based on their defining attributes. Figures are limited to
	right rectangular pyramids, right rectangular prisms, right circular
	cylinders, right circular cones and spheres.
MA.5.GR.2 Find th	e perimeter and area of rectangles with fractional or decimal side
lengths.	
MA.5.GR.2.1	Find the perimeter and area of a rectangle with fractional or decimal
	side lengths using visual models and formulas.
	Access Point
	MA.5.GR.2.AP.1 Find the perimeter and area of a rectangle with
	decimal side lengths using a visual model and calculator.

Geometric	Reasoning
Geometric	iteasoning

MA.5.GR.3 Solve problems involving the volume of right rectangular prisms.		
MA.5.GR.3.1	Explore volume as an attribute of three-dimensional figures by packing them with unit cubes without gaps. Find the volume of a right rectangular prism with whole-number side lengths by counting unit cubes.	
	Access Point MA.5.GR.3.AP.1 Explore volume as an attribute of three- dimensional figures that can be measured by packing them with unit cubes without gaps.	

MA.5.GR.3.2	Find the volume of a right rectangular prism with whole-number	
	side lengths using a visual model and a formula.	
	Access Point	
	MA.5.GR.3.AP.2 Find the volume of a right rectangular prism with	
	whole-number side lengths by counting unit cubes. Explore that the	
	volume is the same as what would be found by multiplying the edge	
	lengths.	
MA.5.GR.3.3	Solve real-world problems involving the volume of right	
	rectangular prisms, including problems with an unknown edge	
	length, with whole-number edge lengths using a visual model or a	
	formula. Write an equation with a variable for the unknown to	
	represent the problem.	
	Access Point	
	MA.5.GR.3.AP.3 Solve real-world problems involving the volume	
	of right rectangular prisms with given whole-number edge lengths	
	using a visual model or formula.	
MA.5.GR.4 Plot points and represent problems on the coordinate plane.		
MA.5.GR.4.1	Identify the origin and axes in the coordinate system. Plot and label	
	ordered pairs in the first quadrant of the coordinate plane.	
	Access Point	
	MA.5.GR.4.AP.1 Explore the first quadrant of the coordinate plane	
	including the origin, axes and points located by using ordered pairs.	
MA.5.GR.4.2	Represent mathematical and real-world problems by plotting points	
	in the first quadrant of the coordinate plane and interpret coordinate	
	values of points in the context of the situation.	
	Access Point	
	MA.5.GR.4.AP.2 Plot and label ordered pairs in the first quadrant	
	of the coordinate plane.	

Data Analysis and Frobability	
MA.5.DP.1 Collect, represent and interpret data and find the mean, mode, median or	
range of a data set.	
MA.5.DP.1.1	Collect and represent numerical data, including fractional and
	decimal values, using tables, line graphs or line plots.
	Access Point
	MA.5.DP.1.AP.1 Sort and represent numerical data, including
	fractional values using tables or line plots (when given a scaled
	number line). Data set to include only whole numbers, halves and
	quarters.
MA.5.DP.1.2	Interpret numerical data, with whole-number values, represented
	with tables or line plots by determining the mean, mode, median or
	range.
	Access Point
	MA.5.DP.1.AP.2 Interpret numerical data, with whole-number
	values, represented with tables or line plots by determining the
	mean, mode or range. Line plot scales to include only whole
	numbers, halves and quarters.

Data Analysis and Probability

Grade 6

MACNOO 1 E	Number Sense and Operations
	nd knowledge of numbers to negative numbers and develop an
<i>understanding of a</i> MA.6.NSO.1.1	
MA.0.NSU.1.1	Extend previous understanding of numbers to define rational
	numbers. Plot, order and compare rational numbers. Access Point
	MA.6.NSO.1.AP.1 Plot, order and compare rational numbers
	(positive and negative integers within 10 from 0, fractions with
	common denominators, decimals up to the hundredths and
	percentages) in the same form.
MA.6.NSO.1.2	Given a mathematical or real-world context, represent quantities
	that have opposite direction using rational numbers. Compare them
	on a number line and explain the meaning of zero within its context.
	Access Point
	MA.6.NSO.1.AP.2 Represent positive and negative numbers in the
	same form on a number line given a real-world situation and
	explain the meaning of zero within its context.
MA.6.NSO.1.3	Given a mathematical or real-world context, interpret the absolute
	value of a number as the distance from zero on a number line. Find
	the absolute value of rational numbers.
	Access Point
	MA.6.NSO.1.AP.3 Find absolute value of a rational number
	ranging from –30 to 30 using a number line.
MA.6.NSO.1.4	Solve mathematical and real-world problems involving absolute
	value, including the comparison of absolute value.
	Access Point
	MA.6.NSO.1.AP.4 Use manipulatives, models or tools to compare
	absolute value in mathematical and real-world problems.
MA.6.NSO.2 Add,	subtract, multiply and divide positive rational numbers.
MA.6.NSO.2.1	Multiply and divide positive multi-digit numbers with decimals to
	the thousandths, including using a standard algorithm with
	procedural fluency.
	Access Point
	MA.6.NSO.2.AP.1 Solve one-step multiplication and division
	problems involving positive decimals whose place value ranges
	from the tens to the hundredths places.
MA.6.NSO.2.2	Extend previous understanding of multiplication and division to
MA.0.1450.2.2	compute products and quotients of positive fractions by positive
	fractions, including mixed numbers, with procedural fluency.
	Access Point
	MA.6.NSO.2.AP.2 Use tools to calculate the product and quotient
	of positive fractions by positive fractions, including mixed
	numbers, using the standard algorithms.
	numoers, using the sumand information.

Number Sense and Operations

MA.6.NSO.2.3	Solve multi-step real-world problems involving any of the four
	operations with positive multi-digit decimals or positive fractions,
	including mixed numbers.
	Access Point
	MA.6.NSO.2.AP.3a Solve one-step real-world problems involving
	any of the four operations with positive decimals ranging from the
	hundreds to hundredth place value.
	MA.6.NSO.2.AP.3b Solve one-step real-world problems involving
	any of the four operations with positive fractions and mixed
	numbers with like denominators.
MAGNEO 2 Annhu	
	properties of operations to rewrite numbers in equivalent forms.
MA.6.NSO.3.1	Given a mathematical or real-world context, find the greatest
	common factor and least common multiple of two whole numbers.
	Access Point
	MA.6.NSO.3.AP.1 Use tools to find the greatest common factor
	and least common multiple of two whole numbers 50 or less.
MA.6.NSO.3.2	Rewrite the sum of two composite whole numbers having a
	common factor, as a common factor multiplied by the sum of two
	whole numbers.
	Access Point
	MA.6.NSO.3.AP.2 Use the distributive property to express a
	number as the sum of two whole numbers multiplied by a common
	factor.
MA.6.NSO.3.3	Evaluate positive rational numbers and integers with natural
	number exponents.
	Access Point
	MA.6.NSO.3.AP.3a Identify what an exponent represents (e.g., 8^3 =
	$8 \times 8 \times 8$).
	MA.6.NSO.3.AP.3b Solve numerical expressions involving whole-
	number bases and exponents
	(e.g., $5 + 2^4 \times 6 = 10\overline{1}$).
MA.6.NSO.3.4	Express composite whole numbers as a product of prime factors
	with natural number exponents.
	Access Point
	MA.6.NSO.3.AP.4 Use a tool to show the prime factors of a
	composite whole number (e.g., $20 = 2 \times 2 \times 5$).
MA.6.NSO.3.5	Rewrite positive rational numbers in different but equivalent forms
	including fractions, terminating decimals and percentages.
	Access Point
	MA.6.NSO.3.AP.5 Rewrite a positive rational number 3 or less, as
	a fraction, decimal or a percent.

d understanding of operations with integers.
Apply and extend previous understandings of operations with
whole numbers to add and subtract integers with procedural
fluency.
Access Point
MA.6.NSO.4.AP.1 Use tools to add and subtract integers between
50 and -50.
Apply and extend previous understandings of operations with
whole numbers to multiply and divide integers with procedural
fluency.
Access Point
MA.6.NSO.4.AP.2 Use tools to multiply and divide integers
between 20 and -20.
revious understanding of arithmetic expressions to algebraic
erious understanding of unanneae expressions to digeordie
Given a mathematical or real-world context, translate written
descriptions into algebraic expressions and translate algebraic
expressions into written descriptions.
Access Point
MA.6.AR.1.AP.1 Write or select an algebraic expression that
represents a real-world situation.
Translate a real-world written description into an algebraic
inequality in the form of $xx > oo$, $xx < oo$,
$xx \ge oo$ or $xx \le oo$. Represent the inequality on a number line.
Access Point
MA.6.AR.1.AP.2 Write or select an inequality that represents a
real-world situation.
Evaluate algebraic expressions using substitution and order of
operations.
Access Point
MA.6.AR.1.AP.3 Solve an expression using substitution with no
more than two operations.
Apply the properties of operations to generate equivalent algebraic
expressions with integer coefficients.
Access Point
MA.6.AR.1.AP.4 Use tools or models to combine like terms in an
expression with no more than four operations.
an understanding for solving equations and inequalities. Write and
tions in one variable.
Given an equation or inequality and a specified set of integer
values, determine which values make the equation or inequality true
or false.
Access Point
MA.6.AR.2.AP.1 Choose which values, from a set of five or fewer

MA.6.AR.2.2	Write and solve one-step equations in one variable within a
	mathematical or real-world context using addition and subtraction,
	where all terms and solutions are integers.
	Access Point
	MA.6.AR.2.AP.2 Solve real-world, one-step linear equations using
	addition and subtraction involving integers.
MA.6.AR.2.3	Write and solve one-step equations in one variable within a
1011 1.0.1 11(.2.5	mathematical or real-world context using multiplication and
	division, where all terms and solutions are integers.
	Access Point
	MA.6.AR.2.AP.3 Solve real-world, one-step linear equations using
	· · · ·
MA.6.AR.2.4	multiplication and division involving integers.Determine the unknown decimal or fraction in an equation
MA.0.AK.2.4	-
	involving any of the four operations, relating three numbers, with
	the unknown in any position.
	Access Point
	MA.6.AR.2.AP.4 Solve a one-step equation using fractions with
	like denominators or decimals with place value ranging from the
	thousand to the thousandths.
MA.6.AR.3 Unders	stand ratio and unit rate concepts and use them to solve problems.
MA.6.AR.3.1	Given a real-world context, write and interpret ratios to show the
	relative sizes of two quantities using appropriate notation: aa, oo to
	<i>bb</i> , or <i>oo:bb</i> where $bb \neq 0$
	Access Point
	MA.6.AR.3.AP.1 Given a real-world context, write and interpret
	ratios to show the relative sizes of two quantities using notation:
	a/b, a to b, or a:b where $b \neq 0$ with guidance and support.
MA.6.AR.3.2	Given a real-world context, determine a rate for a ratio of quantities
	with different units. Calculate and interpret the corresponding unit
	rate
	Access Point
	MA.6.AR.3.AP.2 Given a rate, calculate the unit rate for a ratio
	with different units.
MA.6.AR.3.3	Extend previous understanding of fractions and numerical patterns
	to generate or complete a two- or three-column table to display
	equivalent part-to-part ratios and part-to-part-to-whole ratios.
	Access Point
	MA.6.AR.3.AP.3 Given a visual representation, write or select a
	ratio that describes the ratio relationship between part-to-part and
	part-to-whole ratios.
MA.6.AR.3.4	
	_
MA.6.AR.3.4	 Apply ratio relationships to solve mathematical and real-world problems involving percentages using the relationship between two quantities. Access Point MA.6.AR.3.AP.4 Calculate a percentage of quantity as rate per 100 using models (e.g., percent bars or 10 × 10 grids).

MA.6.AR.3.5	Solve mathematical and real-world problems involving ratios, rates and unit rates, including comparisons, mixtures, ratios of lengths and conversions within the same measurement system.
	Access Point MA.6.AR.3.AP.5a Use tools, models or manipulatives to solve problems involving ratio relationships including mixtures and ratios of length.
	MA.6.AR.3.AP.5b Use tools, models or manipulatives to solve ratio, rate or unit rate problems involving conversions within the same measurement system.

Geometric Reasoning

MA.6.GR.1 Apply	previous understanding of the coordinate plane to solve problems.
MA.6.GR.1.1	Extend previous understanding of the coordinate plane to plot rational number ordered pairs in all four quadrants and on both axes. Identify the <i>x</i> - or <i>y</i> -axis as the line of reflection when two ordered pairs have an opposite <i>x</i> - or <i>y</i> -coordinate.
	Access Point
	MA.6.GR.1.AP.1 Plot integer ordered pairs in all four quadrants and on both axes.
MA.6.GR.1.2	Find distances between ordered pairs, limited to the same
	<i>x</i> -coordinate or the same <i>y</i> -coordinate, represented on the coordinate plane.
	Access Point
	MA.6.GR.1.AP.2 Count the distance between two ordered pairs with the same <i>x</i> -coordinate or the same <i>y</i> -coordinate.
MA.6.GR.1.3	Solve mathematical and real-world problems by plotting points on a coordinate plane, including finding the perimeter or area of a rectangle.
	Access Point
	MA.6.GR.1.AP.3 Given a rectangle plotted on the coordinate plane, find the perimeter or area of the rectangle.
MA.6.GR.2 Model dimensional figure	and solve problems involving two-dimensional figures and three- es.
MA.6.GR.2.1	Derive a formula for the area of a right triangle using a rectangle. Apply a formula to find the area of a triangle.
	Access Point
	MA.6.GR.2.AP.1 Given the formula, find the area of a triangle.
MA.6.GR.2.2	Solve mathematical and real-world problems involving the area of quadrilaterals and composite figures by decomposing them into triangles or rectangles.
	Access Point
	MA.6.GR.2.AP.2 Decompose quadrilaterals and composite figures into simple shapes (rectangles or triangles) to measure area.

MA.6.GR.2.3	Solve mathematical and real-world problems involving the volume
	of right rectangular prisms with positive rational number edge
	lengths using a visual model and a formula.
	Access Point
	MA.6.GR.2.AP.3 Given a real-world problem, find the volume of a
	rectangular prism using a visual model and the formula.
MA.6.GR.2.4	Given a mathematical or real-world context, find the surface area of
	right rectangular prisms and right rectangular pyramids using the
	figure's net.
	Access Point
	MA.6.GR.2.AP.4 Find the surface area of right rectangular prisms by
	adding the areas of the shapes forming the two-dimensional net.
MA 6 DP 1 Daval	op an understanding of statistics and determine measures of center
	ariability. Summarize statistical distributions graphically and
numerically.	ariability. Summarize statistical distributions graphically and
MA.6.DP.1.1	Descentize and formulate a statistical question that would concrete
MA.0.DF.1.1	Recognize and formulate a statistical question that would generate numerical data.
	Access Point
	MA.6.DP.1.AP.1 Identify statistical questions from a list that would
	generate numerical data.
MA.6.DP.1.2	Given a numerical data set within a real-world context, find and
	interpret mean, median, mode and range.
	Access Point
	MA.6.DP.1.AP.2a Use tools to identify and calculate the mean,
	median, mode and range represented in a set of data with no more
	than five elements.
	MA.6.DP.1.AP.2b Identify and explain what the mean and mode
	represent in a set of data with no more than five elements.
MA.6.DP.1.3	Given a box plot within a real-world context, determine the
	minimum, the lower quartile, the median, the upper quartile and the
	maximum. Use this summary of the data to describe the spread and
	distribution of the data.
	Access Point
	MA.6.DP.1.AP.3 Given a box plot, identify the value of the
	minimum, the lower quartile, the median, the upper quartile and the
	maximum.
MA.6.DP.1.4	Given a histogram or line plot within a real-world context,
MA.0.DP.1.4	qualitatively describe and interpret the spread and distribution of the
	data, including any symmetry, skewness, gaps, clusters, outliers and
	the range.
	Access Point
	MA.6.DP.1.AP.4 Given a histogram or a line plot, describe the
	physical features of the graph.

MA.6.DP.1.5	Create box plots and histograms to represent sets of numerical data within real-world contexts.
	Access Point
	MA.6.DP.1.AP.5 Create histograms to represent sets of numerical
	data with 10 or fewer elements.
MA.6.DP.1.6	Given a real-world scenario, determine and describe how changes in
	data values impact measures of center and variation.
	Access Point
	MA.6.DP.1.AP.6 Calculate and identify changes (increase or
	decrease) in the median, mode or range when a data value is added
	or subtracted from a data set.

Grade 7

Number Sense and Operations

MA.7.NSO.1 Rewrite numbers in equivalent forms.	
MA.7.NSO.1.1	Know and apply the Laws of Exponents to evaluate numerical expressions and generate equivalent numerical expressions, limited to whole-number exponents and rational number bases.
	Access Point MA.7.NSO.1.AP.1 Use properties of whole number exponents to produce equivalent expressions.
MA.7.NSO.1.2	Rewrite rational numbers in different but equivalent forms including fractions, mixed numbers, repeating decimals and percentages to solve mathematical and real-world problems.
	Access Point MA.7.NSO.1.AP.2 Rewrite positive rational numbers in different but equivalent forms such as fractions, mixed numbers, repeating decimals and/or percentages to solve problems.
MA.7.NSO.2 Add,	subtract, multiply and divide rational numbers.
MA.7.NSO.2.1	Solve mathematical problems using multi-step order of operations with rational numbers including grouping symbols, whole-number exponents and absolute value.
	Access Point MA.7.NSO.2.AP.1 Solve mathematical problems, using no more than four operations, with rational numbers including grouping symbols, whole-number exponents and absolute value.
MA.7.NSO.2.2	Add, subtract, multiply and divide rational numbers with procedural fluency.
	Access Point MA.7.NSO.2.AP.2 Using tools or models, add, subtract, multiply and divide rational numbers.
MA.7.NSO.2.3	Solve real-world problems involving any of the four operations with rational numbers.
	Access Point MA.7.NSO.2.AP.3 Using tools or models, solve real-world problems involving any of the four operations with rational numbers.

Algebraic Reasoning

MA.7.AR.1 Rewrite algebraic expressions in equivalent forms.	
MA.7.AR.1.1	Apply properties of operations to add and subtract linear expressions
	with rational coefficients.
	Access Point
	MA.7.AR.1.AP.1 Add and subtract linear expressions that include
	like terms.

MA.7.AR.1.2	Determine whether two linear expressions are equivalent.
	Access Point
	MA.7.AR.1.AP.2 Use tools or manipulatives to compare two linear
	expressions, with no more than two operations, to determine whether
	they are equivalent.
MA.7.AR.2 Write a	nd solve equations and inequalities in one variable.
MA.7.AR.2.1	Write and solve one-step inequalities in one variable within a
	mathematical context and represent solutions algebraically or
	graphically.
	Access Point
	MA.7.AR.2.AP.1 Select a one-step inequality from a list that
	represents a real-world situation and given a set of three or fewer
	values, use substitution to solve.
MA.7.AR.2.2	Write and solve two-step equations in one variable within a
	mathematical or real-world context, where all terms are rational
	numbers.
	Access Point
	MA.7.AR.2.AP.2a Set up two-step equations in one variable based
	on real-world problems.
	MA.7.AR.2.AP.2b Solve two-step equations in one variable based on
	real-world problems, where all terms have positive integer
	coefficients.
MA.7.AR.3 Use per	centages and proportional reasoning to solve problems.
MA.7.AR.3.1	Apply previous understanding of percentages and ratios to solve
	multi-step real-world percent problems.
	Access Point
	MA.7.AR.3.AP.1 Solve simple percentage problems in real-world
	contexts.
MA.7.AR.3.2	Apply previous understanding of ratios to solve real-world problems
101111,01110,012	involving proportions.
	Access Point
	MA.7.AR.3.AP.2 Solve simple ratio problems in real-world contexts.
MA.7.AR.3.3	Solve mathematical and real-world problems involving the
	conversion of units across different measurement systems.
	Access Point
	MA.7.AR.3.AP.3 Use tools to solve real-world problems involving
	conversion of units in the same measurement system.
MA 7 AR 4 Analyz	e and represent two-variable proportional relationships.
MA.7.AR.4.1	Determine whether two quantities have a proportional relationship
	by examining a table, graph or written description.
	Access Point
	MA.7.AR.4.AP.1 Given a table or a graph, determine whether two
	quantities have a proportional relationship.

MA.7.AR.4.2	Determine the constant of proportionality within a mathematical or real-world context given a table, graph or written description of a proportional relationship.
	Access Point MA.7.AR.4.AP.2 Identify the constant of proportionality when given a table or graph of a proportional relationship.
MA.7.AR.4.3	Given a mathematical or real-world context, graph proportional relationships from a table, equation or a written description.
	Access Point MA.7.AR.4.AP.3 Given a table or equation, graph a proportional relationship.
MA.7.AR.4.4	Given any representation of a proportional relationship, translate the representation to a written description, table or equation.
	Access Point MA.7.AR.4.AP.4 Given a table representation of a proportional relationship, translate the relationship into an equation or a graph.
MA.7.AR.4.5	Solve real-world problems involving proportional relationships.
	Access Point MA.7.AR.4.AP.5 Solve simple real-world problems involving proportional relationships.

Geometric Reasoning

MA.7.GR.1 Solve problems involving two-dimensional figures, including circles.	
MA.7.GR.1.1	Apply formulas to find the areas of trapezoids, parallelograms and
	rhombi.
	Access Point
	MA.7.GR.1.AP.1 Given the formulas, find the area of parallelograms
	and rhombi.
MA.7.GR.1.2	Solve mathematical or real-world problems involving the area of
	polygons or composite figures by decomposing them into triangles or
	quadrilaterals.
	Access Point
	MA.7.GR.1.AP.2 Decompose complex shapes (polygon, trapezoid,
	and pentagon) into simple shapes (rectangles, squares, triangles) to
	measure area.
MA.7.GR.1.3	Explore the proportional relationship between circumferences and
	diameters of circles. Apply a formula for the circumference of a
	circle to solve mathematical and real-world problems.
	Access Point
	MA.7.GR.1.AP.3 Apply a given formula for the circumference of a
	circle to solve mathematical problems.
MA.7.GR.1.4	Explore and apply a formula to find the area of a circle to solve
	mathematical and real-world problems.
	Access Point
	MA.7.GR.1.AP.4 Apply a given formula to find the area of a circle
	to solve mathematical problems.

MA.7.GR.1.5	Solve mathematical and real-world problems involving dimensions
	and areas of geometric figures, including scale drawings and scale
	factors.
	Access Point
	MA.7.GR.1.AP.5 Use a scale factor to draw a scale drawing of a
	real-world two-dimensional polygon on graph paper.
MA.7.GR.2 Solve p	roblems involving three-dimensional figures, including right
circular cylinders.	
MA.7.GR.2.1	Given a mathematical or real-world context, find the surface area of
	a right circular cylinder using the figure's net.
	Access Point
	MA.7.GR.2.AP.1 Match the parts of a given formula to the right
	circular cylinder using the figure's net.
MA.7.GR.2.2	Solve real-world problems involving surface area of right circular
	cylinders.
	Access Point
	MA.7.GR.2.AP.2 Given the formula, use tools to find the surface
	area of a right circular cylinder using the figure's net.
MA.7.GR.2.3	Solve mathematical and real-world problems involving volume of
	right circular cylinders.
	Access Point
	MA.7.GR.2.AP.3 Given a formula, use tools to calculate the volume
	of right circular cylinders.

Data Analysis and Probability

MA.7.DP.1 Repres	ent and interpret numerical and categorical data.
MA.7.DP.1.1	Determine an appropriate measure of center or measure of variation
	to summarize numerical data, represented numerically or graphically,
	taking into consideration the context and any outliers.
	Access Point
	MA.7.DP.1.AP.1 Use context to determine the appropriate measure
	of center (mean or median) or range to summarize a numerical data
	set with 10 or fewer elements, represented numerically or
	graphically.
MA.7.DP.1.2	Given two numerical or graphical representations of data, use the
	measure(s) of center and measure(s) of variability to make
	comparisons, interpret results and draw conclusions about the two
	populations.
	Access Point
	MA.7.DP.1.AP.2 Given two numerical or graphical representations
	of data in the same form, compare the mean, median or range of each
	representation.

MA.7.DP.1.3	Civon estagorial data from a random comple usa proportional
MA./.DF.1.5	Given categorical data from a random sample, use proportional relationships to make predictions about a population.
	Access Point
	MA.7.DP.1.AP.3 Given data from a random sample of the
	population, select from a list an appropriate prediction about the
	population based on the data.
MA.7.DP.1.4	Use proportional reasoning to construct, display and interpret data in
	circle graphs.
	Access Point
	MA.7.DP.1.AP.4 Use proportional reasoning to interpret data in a
	pie chart.
MA.7.DP.1.5	Given a real-world numerical or categorical data set, choose and
	create an appropriate graphical representation.
	Access Point
	MA.7.DP.1.AP.5 Given a data set, select an appropriate graphical
	representation (histogram, bar chart, or line plot).
MA.7.DP.2 Develo	p an understanding of probability. Find and compare experimental
and theoretical pro	
MA.7.DP.2.1	Determine the sample space for a simple experiment.
	Access Point
	MA.7.DP.2.AP.1 Use tree diagrams, frequency tables, organized
	lists, and/or simulations to collect data from a simple experiment.
MA.7.DP.2.2	Given the probability of a chance event, interpret the likelihood of it
	occurring. Compare the probabilities of chance events.
	Access Point
	MA.7.DP.2.AP.2 Given the probability of a simple chance event
	written as a fraction, percentage or decimal between 0 and 1,
	determine how likely is it that an event will occur.
MA.7.DP.2.3	Find the theoretical probability of an event related to a simple
	experiment.
	Access Point
	MA.7.DP.2.AP.3 Determine the theoretical probability of a simple
	chance event.
MA.7.DP.2.4	Use a simulation of a simple experiment to find experimental
	probabilities and compare them to theoretical probabilities.
	Access Point
	MA.7.DP.2.AP.4 Conduct a simple experiment to find experimental
	probabilities.
	Theorem (199)

Grade 8

Number Sense and Operations MA.8.NSO.1 Solve problems involving rational numbers, including numbers in scientific notation, and extend the understanding of rational numbers to irrational numbers.	
MA.8.NSO.1.1	Extend previous understanding of rational numbers to define irrational numbers within the real number system. Locate an approximate value of a numerical expression involving irrational numbers on a number line.
	Access Point MA.8.NSO.1.AP.1 Locate approximations of irrational numbers on a number line.
MA.8.NSO.1.2	Plot, order and compare rational and irrational numbers, represented in various forms.
	Access Point MA.8.NSO.1.AP.2 Use appropriate tools to plot, order, and compare simple square roots and cube roots for quantities less than 100.
MA.8.NSO.1.3	Extend previous understanding of the Laws of Exponents to include integer exponents. Apply the Laws of Exponents to evaluate numerical expressions and generate equivalent numerical expressions, limited to integer exponents and rational number bases, with procedural fluency.
	Access Point MA.8.NSO.1.AP.3 Use the properties of integer exponents and product/quotient of powers with like bases to produce equivalent expressions.
MA.8.NSO.1.4	Express numbers in scientific notation to represent and approximate very large or very small quantities. Determine how many times larger or smaller one number is compared to a second number.
	Access Point MA.8.NSO.1.AP.4 Multiply a single-digit number by the power of 10 using a calculator. Identify whether the number in scientific notation represents a very large or very small quantity.
MA.8.NSO.1.5	Add, subtract, multiply and divide numbers expressed in scientific notation with procedural fluency.
	Access Point MA.8.NSO.1.AP.5 Perform operations with numbers expressed in scientific notation using a calculator.
MA.8.NSO.1.6	Solve real-world problems involving operations with numbers expressed in scientific notation.
	Access Point MA.8.NSO.1.AP.6 Given a real-world problem, perform operations with numbers expressed in scientific notation using a calculator and interpret the answer in context.

Number Sense and Operations

MA.8.NSO.1.7	Solve multi-step mathematical and real-world problems involving the order of operations with rational numbers including exponents and radicals.
	Access Point MA.8.NSO.1.AP.7 Use tools to solve multi-step mathematical problems, with four or fewer steps, involving the order of operations with rational numbers including exponents and perfect squares and/or square roots.

	Algebraic Reasoning
MA.8.AR.1 Gener	rate equivalent algebraic expressions.
MA.8.AR.1.1	Apply the Laws of Exponents to generate equivalent algebraic
	expressions, limited to integer exponents and monomial bases.
	Access Point
	MA.8.AR.1.AP.1 Use the properties of integer exponents and
	product/quotient of powers with like bases to produce equivalent
	algebraic expressions limited to positive exponents and monomial
	bases.
MA.8.AR.1.2	Apply properties of operations to multiply two linear expressions
	with rational coefficients.
	Access Point
	MA.8.AR.1.AP.2 Use the distributive property to multiply a
	monomial by a linear expression.
MA.8.AR.1.3	Rewrite the sum of two algebraic expressions having a common
	monomial factor as a common factor multiplied by the sum of two
	algebraic expressions.
	Access Point
	MA.8.AR.1.AP.3 Rewrite the sum of two linear algebraic expressions
	having a common whole number monomial factor as the common
	factor multiplied by the sum of two linear algebraic expressions.
MA.8.AR.2 Solve	multi-step one-variable equations and inequalities
MA.8.AR.2.1	Solve multi-step linear equations in one variable, with rational
	number coefficients. Include equations with variables on both sides.
	Access Point
	MA.8.AR.2.AP.1a Identify the steps to solve a given multi-step
	equation in one variable, with integers coefficients. Include
	equations with variables on both sides.
	MA.8.AR.2.AP.1b Solve multi-step equations in one variable, with
	integers coefficients. Include equations with variables on both sides.
MA.8.AR.2.2	Solve two-step linear inequalities in one variable and represent
	solutions algebraically and graphically.
	Access Point
	MA.8.AR.2.AP.2 Select a two-step inequality from a list that
	represents a real-world situation and use substitution to solve.

MA.8.AR.2.3	Given an equation in the form of $xx^2 = pp$ and $xx^3 = qq$, where pp is
WIA.0.AIX.2.3	a whole number and qq is an integer, determine the real solutions.
	Access Point
	MA.8.AR.2.AP.3 Given an equation in the form of $x^2 = p$ and $x^3 = q$,
	use tools to determine real solutions where p is a perfect square up to
	144 and q is a perfect cube from
	-125 to 125.
MAQAD 2 Exter	d understanding of proportional relationships to two-variable linear
equations.	a understanding of proportional relationships to two-variable tinear
MA.8.AR.3.1	Determine if a linear relationship is also a proportional relationship.
	Access Point
	MA.8.AR.3.AP.1 MA.8.AR.3.AP.1 Given a table, a graph, or
	equation, determine whether a linear relationship is proportional.
MA.8.AR.3.2	Given a table, graph or written description of a linear relationship,
	determine the slope.
	Access Point
	MA.8.AR.3.AP.2 Given a table or graph of a linear relationship,
	identify the slope.
MA.8.AR.3.3	Given a table, graph or written description of a linear relationship,
1011 1.0.1 11(.5.5	write an equation in slope-intercept form.
	Access Point
	MA.8.AR.3.AP.3 Given a table or graph of a linear relationship,
	identify from a list, the equation in slope-intercept form.
MA.8.AR.3.4	Given a mathematical or real-world context, graph a two-variable
1VIA.0.AIX.J.+	linear equation from a written description, a table or an equation in
	slope-intercept form.
	Access Point
	MA.8.AR.3.AP.4 Graph a two-variable linear equation from a table
	or an equation in slope-intercept form.
MA.8.AR.3.5	Given a real-world context, determine and interpret the slope and <i>tt</i> -
MA.0.AK.J.J	intercept of a two-variable linear equation from a written description,
	a table, a graph or an equation in slope-intercept form.
	Access Point
	MA.8.AR.3.AP.5 Given a real-world context, identify the slope and
	<i>y</i> -intercept of a two-variable linear equation from a table, a graph or
MAQADA Daval	an equation in slope-intercept form.
	op an understanding of two-variable systems of equations.
MA.8.AR.4.1	Given a system of two linear equations and a specified set of
	possible solutions, determine which ordered pairs satisfy the system
	of linear equations.
	Access Point
	MA.8.AR.4.AP.1a Given a system of two linear equations displayed
	on a graph, identify the solution of a system as the point where the
	two lines intersect.
	MA.8.AR.4.AP.1b Identify the coordinates of the point of
	intersection for two linear equations plotted on a coordinate plane.

MA.8.AR.4.2	Given a system of two linear equations represented graphically on the same coordinate plane, determine whether there is one solution,
	no solution or infinitely many solutions.
	Access Point
	MA.8.AR.4.AP.2 Given a system of two linear equations represented
	graphically on the same coordinate plane, identify whether there is
	one solution or no solution.
MA.8.AR.4.3	Given a mathematical or real-world context, solve systems of two
	linear equations by graphing.
	Access Point
	MA.8.AR.4.AP.3 Given two sets of coordinates for two lines, plot
	the lines on a coordinate plane and describe or select the solution to a
	system of linear equations.
MA.8.F.1 Define, e	evaluate and compare functions.
MA.8.F.1.1	Given a set of ordered pairs, a table, a graph or mapping diagram,
	determine whether the relationship is a function. Identify the domain
	and range of the relation.
	Access Point
	MA.8.F.1.AP.1a Given a set of ordered pairs, a table or mapping
	MA.8.F.1.AP.1a Given a set of ordered pairs, a table or mapping
	MA.8.F.1.AP.1a Given a set of ordered pairs, a table or mapping diagram identify whether the relationship is a function.
MA.8.F.1.2	 MA.8.F.1.AP.1a Given a set of ordered pairs, a table or mapping diagram identify whether the relationship is a function. MA.8.F.1.AP.1b Given a set of ordered pairs, a table or mapping diagram identify the domain and range of the relation. Given a function defined by a graph or an equation, determine
MA.8.F.1.2	 MA.8.F.1.AP.1a Given a set of ordered pairs, a table or mapping diagram identify whether the relationship is a function. MA.8.F.1.AP.1b Given a set of ordered pairs, a table or mapping diagram identify the domain and range of the relation. Given a function defined by a graph or an equation, determine whether the function is a linear function. Given an input-output table,
MA.8.F.1.2	 MA.8.F.1.AP.1a Given a set of ordered pairs, a table or mapping diagram identify whether the relationship is a function. MA.8.F.1.AP.1b Given a set of ordered pairs, a table or mapping diagram identify the domain and range of the relation. Given a function defined by a graph or an equation, determine whether the function is a linear function. Given an input-output table, determine whether it could represent a linear function.
MA.8.F.1.2	 MA.8.F.1.AP.1a Given a set of ordered pairs, a table or mapping diagram identify whether the relationship is a function. MA.8.F.1.AP.1b Given a set of ordered pairs, a table or mapping diagram identify the domain and range of the relation. Given a function defined by a graph or an equation, determine whether the function is a linear function. Given an input-output table, determine whether it could represent a linear function. Access Point
MA.8.F.1.2	 MA.8.F.1.AP.1a Given a set of ordered pairs, a table or mapping diagram identify whether the relationship is a function. MA.8.F.1.AP.1b Given a set of ordered pairs, a table or mapping diagram identify the domain and range of the relation. Given a function defined by a graph or an equation, determine whether the function is a linear function. Given an input-output table, determine whether it could represent a linear function. Access Point MA.8.F.1.AP.2 Given a function displayed on a graph or an
	 MA.8.F.1.AP.1a Given a set of ordered pairs, a table or mapping diagram identify whether the relationship is a function. MA.8.F.1.AP.1b Given a set of ordered pairs, a table or mapping diagram identify the domain and range of the relation. Given a function defined by a graph or an equation, determine whether the function is a linear function. Given an input-output table, determine whether it could represent a linear function. Access Point MA.8.F.1.AP.2 Given a function displayed on a graph or an equation, identify whether the function is a linear function.
MA.8.F.1.2 MA.8.F.1.3	 MA.8.F.1.AP.1a Given a set of ordered pairs, a table or mapping diagram identify whether the relationship is a function. MA.8.F.1.AP.1b Given a set of ordered pairs, a table or mapping diagram identify the domain and range of the relation. Given a function defined by a graph or an equation, determine whether the function is a linear function. Given an input-output table, determine whether it could represent a linear function. Access Point MA.8.F.1.AP.2 Given a function displayed on a graph or an equation, identify whether the function is a linear function.
	 MA.8.F.1.AP.1a Given a set of ordered pairs, a table or mapping diagram identify whether the relationship is a function. MA.8.F.1.AP.1b Given a set of ordered pairs, a table or mapping diagram identify the domain and range of the relation. Given a function defined by a graph or an equation, determine whether the function is a linear function. Given an input-output table, determine whether it could represent a linear function. Access Point MA.8.F.1.AP.2 Given a function displayed on a graph or an equation, identify whether the function is a linear function. Analyze a real-world written description or graphical representation of a functional relationship between two quantities and identify
	 MA.8.F.1.AP.1a Given a set of ordered pairs, a table or mapping diagram identify whether the relationship is a function. MA.8.F.1.AP.1b Given a set of ordered pairs, a table or mapping diagram identify the domain and range of the relation. Given a function defined by a graph or an equation, determine whether the function is a linear function. Given an input-output table, determine whether it could represent a linear function. Access Point MA.8.F.1.AP.2 Given a function displayed on a graph or an equation, identify whether the function is a linear function is a linear function. Analyze a real-world written description or graphical representation of a functional relationship between two quantities and identify where the function is increasing, decreasing or constant.
	 MA.8.F.1.AP.1a Given a set of ordered pairs, a table or mapping diagram identify whether the relationship is a function. MA.8.F.1.AP.1b Given a set of ordered pairs, a table or mapping diagram identify the domain and range of the relation. Given a function defined by a graph or an equation, determine whether the function is a linear function. Given an input-output table, determine whether it could represent a linear function. Access Point MA.8.F.1.AP.2 Given a function displayed on a graph or an equation, identify whether the function is a linear function. Analyze a real-world written description or graphical representation of a functional relationship between two quantities and identify where the function is increasing, decreasing or constant. Access Point
	 MA.8.F.1.AP.1a Given a set of ordered pairs, a table or mapping diagram identify whether the relationship is a function. MA.8.F.1.AP.1b Given a set of ordered pairs, a table or mapping diagram identify the domain and range of the relation. Given a function defined by a graph or an equation, determine whether the function is a linear function. Given an input-output table, determine whether it could represent a linear function. Access Point MA.8.F.1.AP.2 Given a function displayed on a graph or an equation, identify whether the function is a linear function is a linear function. Analyze a real-world written description or graphical representation of a functional relationship between two quantities and identify where the function is increasing, decreasing or constant.

Geometric Reasoning

MA.8.GR.1 Develop an understanding of the Pythagorean Theorem and angle relationships involving triangles.	
MA.8.GR.1.1	Apply the Pythagorean Theorem to solve mathematical and real- world problems involving unknown side lengths in right triangles.
	Access Point MA.8.GR.1.AP.1 Find the hypotenuse of a two-dimensional right triangle using the Pythagorean Theorem.

MA.8.GR.1.2	Apply the Pythagorean Theorem to solve mathematical and real-
	world problems involving the distance between two points in a
	coordinate plane.
	Access Point
	MA.8.GR.1.AP.2 Given the Pythagorean Theorem, determine
	lengths/distances between two points in a coordinate system by
	forming right triangles, with natural number side lengths.
MA.8.GR.1.3	Use the Triangle Inequality Theorem to determine if a triangle can be
	formed from a given set of sides. Use the converse of the
	Pythagorean Theorem to determine if a right triangle can be formed
	from a given set of sides.
	Access Point
	MA.8.GR.1.AP.3a Measure the sides of triangles to establish facts
	about the Triangle Inequality Theorem (i.e., the sum of two side
	lengths is greater than the third side).
	MA.8.GR.1.AP.3b Substitute the side lengths of a given figure into
	the Pythagorean Theorem to determine if a right triangle can be
	formed.
MA.8.GR.1.4	Solve mathematical problems involving the relationships between
WIA.0.UK.1.4	supplementary, complementary, vertical or adjacent angles.
	Access Point
	MA.8.GR.1.AP.4 Identify supplementary, complementary, vertical
N(A 0 CD 1 5	or adjacent angle relationships.
MA.8.GR.1.5	Solve problems involving the relationships of interior and exterior
	angles of a triangle.
	Access Point
	MA.8.GR.1.AP.5 Given an image, solve simple problems involving
	the relationships of interior and exterior angles of a triangle.
MA.8.GR.1.6	Develop and use formulas for the sums of the interior angles of
	regular polygons by decomposing them into triangles.
	Access Point
	MA.8.GR.1.AP.6 Use tools to calculate the sum of the interior angles
	of regular polygons when given the formula.
MA.8.GR.2 Under	rstand similarity and congruence using models and transformations.
MA.8.GR.2.1	Given a preimage and image generated by a single transformation,
	identify the transformation that describes the relationship.
	Access Point
	MA.8.GR.2.AP.1 Given two figures on a coordinate plane, identify if
	the image is translated, rotated or reflected.
MA.8.GR.2.2	Given a preimage and image generated by a single dilation, identify
	the scale factor that describes the relationship.
	Access Point
	MA.8.GR.2.AP.2 Given a preimage and image describe the effect
	the dilation has on the two figures.

MA.8.GR.2.3	Describe and apply the effect of a single transformation on two- dimensional figures using coordinates and the coordinate plane.
	Access Point
	MA.8.GR.2.AP.3 Identify the coordinates of the vertices of a
	common polygon after a single translation, rotation or dilation on the
	coordinate plane.
MA.8.GR.2.4	Solve mathematical and real-world problems involving proportional
	relationships between similar triangles.
	Access Point
	MA.8.GR.2.AP.4 Use tools to solve mathematical problems using
	proportions between similar triangles.

Data Analysis and Probability

Data Analysis and Probability	
MA.8.DP.1 Represe	ent and investigate numerical bivariate data
MA.8.DP.1.1	Given a set of real-world bivariate numerical data, construct a scatter
	plot or a line graph as appropriate for the context.
	Access Point
	MA.8.DP.1.AP.1 Graph bivariate data using a scatter plot.
MA.8.DP.1.2	Given a scatter plot within a real-world context, describe patterns of
	association.
	Access Point
	MA.8.DP.1.AP.2 Given a scatter plot, identify whether the patterns
	of association are no association, positive association, negative
	association, linear or nonlinear.
MA.8.DP.1.3	Given a scatter plot with a linear association, informally fit a straight
	line.
	Access Point
	MA.8.DP.1.AP.3 Given a scatter plot with a linear association, use
	tools to draw or place a line of fit.
MA.8.DP.2 Represent and find probabilities of repeated experiments.	
MA.8.DP.2.1	Determine the sample space for a repeated experiment.
	Access Point
	MA.8.DP.2.AP.1 Use a tool (table, list or tree diagram) to record
	results of a repeated experiment.
MA.8.DP.2.2	Find the theoretical probability of an event related to a repeated
	experiment.
	Access Point
	MA.8.DP.2.AP.2 Select the theoretical probability of an event
	related to a repeated experiment from a list.

MA.8.DP.2.3	Solve real-world problems involving probabilities related to single or repeated experiments, including making predictions based on theoretical probability.
	Access Point MA.8.DP.2.AP.3 Compare actual results of an experiment with its theoretical probability (e.g., make a statement that describes the relationship between the actual results of an experiment with its theoretical probability [e.g., more, less, same, different, equal]).

9-12 Overview

9-12 Number Sense and Operations Strand

MA.912.NSO.1 Generate equivalent expressions and perform operations with		
expressions involving e	expressions involving exponents, radicals or logarithms.	
MA.912.NSO.1.1	Extend previous understanding of the Laws of Exponents to	
	include rational exponents. Apply the Laws of Exponents to	
	evaluate numerical expressions and generate equivalent	
	numerical expressions involving rational exponents.	
	Access Point	
	MA.912.NSO.1.AP.1 Evaluate numerical expressions involving	
	rational exponents.	
MA.912.NSO.1.2	Generate equivalent algebraic expressions using the properties of exponents.	
	Access Point	
	MA.912.NSO.1.AP.2 Identify equivalent algebraic expressions	
	using properties of exponents.	
MA.912.NSO.1.3	Generate equivalent algebraic expressions involving radicals or	
	rational exponents using the properties of exponents. Radicands	
	are limited to monomial algebraic expressions.	
	Access Point	
	MA.912.NSO.1.AP.3 Using properties of exponents, identify	
	equivalent algebraic expressions involving radicals and rational	
	exponents. Radicands are limited to monomial algebraic	
	expression.	
MA.912.NSO.1.4	Apply previous understanding of operations with rational	
	numbers to add, subtract, multiply and divide numerical	
	radicals.	
	Access Point	
	MA.912.NSO.1.AP.4 Apply previous understanding of	
	operations with rational numbers to add and subtract numerical	
	radicals that are in radical form.	

MA.912.NSO.1.5	Add, subtract, multiply and divide algebraic expressions
	involving radicals. Radicands are limited to monomial algebraic
	expressions.
	Access Point
	MA.912.NSO.1.AP.5 Add and subtract algebraic expressions
	involving radicals. Radicands are limited to monomial algebraic
	expressions.
MA.912.NSO.1.6	Given a numerical logarithmic expression, evaluate and generate
	equivalent numerical expressions using the properties of
	logarithms or exponents.
	Access Point
	MA.912.NSO.1.AP.6 Given a numerical logarithmic expression,
	identify an equivalent numerical expression using the properties
	of logarithms or exponents.
MA.912.NSO.1.7	Given an algebraic logarithmic expression, generate an
MA.912.NSO.1./	equivalent algebraic expression using the properties of
	logarithms or exponents.
	Access Point
	MA.912.NSO.1.AP.7 Given an algebraic logarithmic
	expression, identify an equivalent algebraic expression using the
	properties of logarithms or exponents.
-	sent and perform operations with expressions within the complex
number system.	
MA.912.NSO.2.1	Extend previous understanding of the real number system to
	include the complex number system. Add, subtract, multiply and
	divide complex numbers.
	Access Point
	MA.912.NSO.2.AP.1 Extend previous understanding of the real
	number system to include the complex number system. Add and
	subtract complex numbers.
MA.912.NSO.2.2	Represent addition, subtraction, multiplication and conjugation
	of complex numbers geometrically on the complex plane.
	Access Point
	MA.912.NSO.2.AP.2 Represent addition and subtraction of
	complex numbers geometrically on the complex plane.

-	ret and rewrite algebraic expressions and equations in equivalent
<i>forms.</i> MA.912.AR.1.1	Identify and interpret parts of an equation or expression that represent a quantity in terms of a mathematical or real-world context, including viewing one or more of its parts as a single entity.
	Access Point MA.912.AR.1.AP.1 Identify a part(s) of an equation or expression and explain the meaning within the context of a problem.
MA.912.AR.1.2	Rearrange equations or formulas to isolate a quantity of interest.Access PointMA.912.AR.1.AP.2 Rearrange an equation or a formula for a specific variable.
MA.912.AR.1.3	Add, subtract and multiply polynomial expressions with rational number coefficients. Access Point MA.912.AR.1.AP.3 Add, subtract and multiply polynomial
MA.912.AR.1.4	expressions with integer coefficients. Divide a polynomial expression by a monomial expression with rational number coefficients. Access Point MA.912.AR.1.AP.4 Divide a polynomial expression by a monomial expression with integer coefficients.
MA.912.AR.1.5	Divide polynomial expressions using long division, synthetic division and algebraic manipulation.Access PointMA.912.AR.1.AP.5 Divide polynomial expressions using long division, synthetic division and algebraic manipulation where the denominator is a linear expression.
MA.912.AR.1.6	 Solve mathematical and real-world problems involving addition, subtraction, multiplication or division of polynomials. Access Point MA.912.AR.1.AP.6 Solve mathematical and/or real-world problems involving addition, subtraction, multiplication or division of polynomials with integer coefficients.
MA.912.AR.1.7	Rewrite a polynomial expression as a product of polynomials over the real number system. Access Point MA.912.AR.1.AP.7 Factor a quadratic expression.

9-12 Algebraic Reasoning Strand

MA.912.AR.1.8	Rewrite a polynomial expression as a product of polynomials
	over the real or complex number system.
	Access Point
	MA.912.AR.1.AP.8 Select a polynomial expression as a product
	of polynomials with integer coefficients over the real or complex
	number system.
MA.912.AR.1.9	Apply previous understanding of rational number operations to
	add, subtract, multiply and divide rational expressions.
	Access Point
	MA.912.AR1.AP.9 Apply previous understanding of rational
	number operations with common denominators to add and
	subtract rational expressions.
MA.912.AR.2 Write, so	lve and graph linear equations, functions and inequalities in one
and two variables.	
MA.912.AR.2.1	Given a real-world context, write and solve one-variable multi-
	step linear equations.
	Access Point
	MA.912.AR.2.AP.1 Given an equation in a real-world context,
	solve one-variable multi-step linear equations.
MA.912.AR.2.2	Write a linear two-variable equation to represent relationships
	between quantities from a graph, a written description or a table
	of values within a mathematical or real-world context.
	Access Point
	MA.912.AR.2.AP.2 Select a linear two-variable equation to
	represent relationships between quantities from a graph, a
	written description or a table of values within a mathematical or
	real-world context.
MA.912.AR.2.3	Write a linear two-variable equation for a line that is parallel or
	perpendicular to a given line and goes through a given point.
	Access Point
	MA.912.AR.2.AP.3 Select a linear two-variable equation in
	slope intercept form for a line that is parallel or perpendicular to
	a given line and goes through a given point.
MA.912.AR.2.4	Given a table, equation or written description of a linear
	function, graph that function, and determine and interpret its key
	features.
	Access Point
	MA.912.AR.2.AP.4 Given a table, equation or written
	description of a linear function, select a graph of that function
	and determine at least two key features (can include domain,
	range, <i>y</i> -intercept or slope).

MA.912.AR.2.5	Solve and graph mathematical and real-world problems that are
	modeled with linear functions. Interpret key features and
	determine domain constraints in terms of the context.
	Access Point
	MA.912.AR.2.AP.5 Given a mathematical and/or real-world
	problem that is modeled with linear functions, solve the
	mathematical problem, or select the graph using key features (in
	terms of context) that represents this model.
MA.912.AR.2.6	Given a mathematical or real-world context, write and solve
	one-variable linear inequalities, including compound
	inequalities. Represent solutions algebraically or graphically.
	Access Point
	MA.912.AR.2.AP.6 Given a mathematical and/or real-world
	context, select a one-variable linear inequality that represents
	the solution algebraically or graphically.
MA.912.AR.2.7	Write two-variable linear inequalities to represent relationships
	between quantities from a graph or a written description within a
	mathematical or real-world context.
	Access Point
	MA.912.AR.2.AP.7 Select a two-variable linear inequality to
	represent relationships between quantities from a graph.
MA.912.AR.2.8	Given a mathematical or real-world context, graph the solution
	set to a two-variable linear inequality.
	Access Point
	MA.912.AR.2.AP.8 Given a two-variable linear inequality,
	select a graph that represents the solution.
MA.912.AR.3 Write, so	lve and graph quadratic equations, functions and inequalities in
one and two variables.	
MA.912.AR.3.1	Given a mathematical or real-world context, write and solve
	one-variable quadratic equations over the real number system.
	Access Point
	MA.912.AR.3.AP.1 Given a one-variable quadratic equation
	from a mathematical or real-world context, select the solution to
	the equation over the real number system.
MA.912.AR.3.2	Given a mathematical or real-world context, write and solve
	one-variable quadratic equations over the real and complex
	number systems.
	Access Point
	MA.912.AR.3.AP.2 Solve mathematical one-variable quadratic
	equations with integer coefficients over the real and complex
	number systems.

MA.912.AR.3.3	Given a mathematical or real-world context, write and solve
	one-variable quadratic inequalities over the real number system.
	Represent solutions algebraically or graphically.
	Access Point
	MA.912.AR.3.AP.3 Given a mathematical or real-world
	context, select a one-variable quadratic inequality over the real
	number system that represents the solution algebraically or
	graphically.
MA.912.AR.3.4	Write a quadratic function to represent the relationship between
	two quantities from a graph, a written description or a table of
	values within a mathematical or real-world context.
	Access Point
	MA.912.AR.3.AP.4 Select a quadratic function to represent the
	relationship between two quantities from a graph.
MA.912.AR.3.5	Given the <i>x</i> -intercepts and another point on the graph of a
	quadratic function, write the equation for the function
	Access Point
	MA.912.AR.3.AP.5 Given the <i>x</i> -intercepts and another point on
	the graph of a quadratic function, select the equation for the
	function.
MA.912.AR.3.6	Given an expression or equation representing a quadratic
	function, determine the vertex and zeros and interpret them in
	terms of a real-world context.
	Access Point
	MA.912.AR.3.AP.6 Given an expression or equation
	representing a quadratic function in vertex form, determine the
	vertex and zeros.
MA.912.AR.3.7	Given a table, equation or written description of a quadratic
	function, graph that function, and determine and interpret its key
	features.
	Access Point
	MA.912.AR.3.AP.7 Given a table, equation or written description
	of a quadratic function, select the graph that represents the
	function.
MA.912.AR.3.8	Solve and graph mathematical and real-world problems that are
	modeled with quadratic functions. Interpret key features and
	determine constraints in terms of the context.
	Access Point
	MA.912.AR.3.AP.8 Given a mathematical and/or real-world
	problem that is modeled with quadratic functions, solve the
	mathematical problem, or select the graph using key features (in
	terms of context) that represents this model.

MA.912.AR.3.9	Given a mathematical or real-world context, write two-variable
	quadratic inequalities to represent relationships between
	quantities from a graph or a written description.
	Access Point
	MA.912.AR.3.AP.9 Select two-variable quadratic inequalities to
	represent relationships between quantities from a graph or a
	written description.
MA.912.AR.3.10	Given a mathematical or real-world context, graph the solution
1111.912.111.9.10	set to a two-variable quadratic inequality.
	Access Point
	MA.912.AR.3.AP.10 Select the graph of the solution set to a
	two-variable quadratic inequality.
MA.912.AR.4 Write, s inequalities in one an	solve and graph absolute value equations, functions and d two variables
MA.912.AR.4.1	Given a mathematical or real-world context, write and solve
101/1./12./11(.7.1	one-variable absolute value equations.
	Access Point
	MA.912.AR.4.AP.1 Solve a one variable absolute value
	equation.
MA.912.AR.4.2	Given a mathematical or real-world context, write and solve
IVIA.)12.AIX.7.2	one-variable absolute value inequalities. Represent solutions
	algebraically or graphically.
	Access Point
	MA.912.AR.4.AP.2 Solve a one-variable absolute value
	inequality. Represent solutions algebraically or graphically.
MA.912.AR.4.3	Given a table, equation or written description of an absolute
WIA.912.AK.+.3	value function, graph that function and determine its key
	features.
	Access Point
	MA.912.AR.4.AP.3 Given a table, equation or written
	description of an absolute value function, select the graph that
MA.912.AR.4.4	represents the function.
MA.912.AK.4.4	Solve and graph mathematical and real-world problems that are
	modeled with absolute value functions. Interpret key features
	and determine domain constraints in terms of the context
	Access Point
	MA.912.AR.4.AP.4 Given a mathematical and/or real-world
	problem that is modeled with absolute value functions, solve the
	mathematical problem, or select the graph using key features (in
	terms of context) that represents this model.

MA.912.AR.5 Write, so	lve and graph exponential and logarithmic equations and
functions in one and tw	
MA.912.AR.5.2	Solve one-variable equations involving logarithms or exponential
	expressions. Interpret solutions as viable in terms of the context
	and identify any extraneous solutions.
	Access Point
	MA.912.AR.5.AP.2 Solve one-variable equations involving
	logarithms or exponential expressions. Identify any extraneous
	solutions.
MA.912.AR.5.3	Given a mathematical or real-world context, classify an
	exponential function as representing growth or decay.
	Access Point
	MA.912.AR.5.AP.3 Given a real-world context, identify an
	exponential function as representing growth or decay.
MA.912.AR.5.4	Write an exponential function to represent a relationship
	between two quantities from a graph, a written description or a
	table of values within a mathematical or real-world context.
	Access Point
	MA.912.AR.5.AP.4 Select an exponential function to represent
	two quantities from a graph or a table of values.
MA.912.AR.5.5	Given an expression or equation representing an exponential
	function, reveal the constant percent rate of change per unit
	interval using the properties of exponents. Interpret the constant
	percent rate of change in terms of a real-world context.
	Access Point
	MA.912.AR.5.AP.5 Given an expression or equation
	representing an exponential function, reveal the constant percent
	rate of change per unit interval using the properties of
	exponents.
MA.912.AR.5.6	Given a table, equation or written description of an exponential
	function, graph that function and determine its key features.
	Access Point
	MA.912.AR.5.AP.6 Given a table, equation or written
	description of an exponential function, select the graph that
	represents the function.
MA.912.AR.5.7	Solve and graph mathematical and real-world problems that are
	modeled with exponential functions. Interpret key features and
	determine domain constraints in terms of the context.
	Access Point
	MA.912.AR.5.AP.7 Given a mathematical and/or real-world
	problem that is modeled with exponential functions, solve the
	mathematical problem, or select the graph using key features (in
	terms of context) that represents this model.

MA.912.AR.5.8	Given a table, equation or written description of a logarithmic
	function, graph that function and determine its key features.
	Access Point
	MA.912.AR.5.AP.8 Given an equation of a logarithmic
	function, select the graph of that function.
MA.912.AR.5.9	Solve and graph mathematical and real-world problems that are
	modeled with logarithmic functions. Interpret key features and
	determine constraints in terms of the context.
	Access Point
	MA.912.AR.5.AP.9 Given a mathematical and/or real-world
	problem that is modeled with logarithmic functions, solve the
	mathematical problem, or select the graph using key features (in
	terms of context) that represents this model.
MA.912.AR.6 Solve a	and graph polynomial equations and functions in one and two
variables.	
MA.912.AR.6.1	Given a mathematical or real-world context, when suitable
	factorization is possible, solve one-variable polynomial
	equations of degree 3 or higher over the real and complex
	number systems.
	Access Point
	MA.912.AR.6.AP.1 Solve one-variable polynomial equations of
	degree 3 or higher in factored form, over the real number
	system.
MA.912.AR.6.5	Sketch a rough graph of a polynomial function of degree 3 or
	higher using zeros, multiplicity and knowledge of end behavior.
	Access Point
	MA.912.AR.6.AP.5 Create a rough graph of a polynomial
	function of degree 3 or higher (in factored form) using zeros,
	multiplicity and knowledge of end behavior.
MA.912.AR.7 Solve a variables.	and graph radical equations and functions in one and two
MA.912.AR.7.1	Solve one-variable radical equations. Interpret solutions as
	viable in terms of context and identify any extraneous solutions.
	Access Point
	MA.912.AR.7.AP.1 Solve one-variable radical equations and
	identify any extraneous solutions.
MA.912.AR.7.2	Given a table, equation or written description of a square root or
	cube root function, graph that function and determine its key
	features.
	Access Point
	MA.912.AR.7.AP.2 Given a table, equation or written description
	of a square root or cube root function, select the graph that
	represents the function.

MA.912.AR.7.3	Solve and graph mathematical and real-world problems that are
	modeled with square root or cube root functions. Interpret key
	features in context.
	Access Point
	MA.912.AR.7.AP.3 Given a mathematical and/or real-world
	problem that is modeled with square root or cube root functions,
	solve the mathematical problem, or select the graph using key
	features (in terms of context) that represents this model.
MA.912.AR.8 Solve and	d graph rational equations and functions in one and two
variables.	
MA.912.AR.8.1	Write and solve one-variable rational equations. Interpret
	solutions as viable in terms of the context and identify any
	extraneous solutions.
	Access Point
	MA.912.AR.8.AP.1 Solve one-variable rational equations and
	identify any extraneous solutions.
MA.912.AR.8.2	Given a table, equation or written description of a rational
	function, graph that function and determine its key features.
	Access Point
	MA.912.AR.8.AP.2 Given a table, equation or written description
	of a rational function, select the graph that represents the function.
MA.912.AR.8.3	Solve and graph mathematical and real-world problems that are
	modeled with rational functions. Interpret key features in terms
	of the context.
	Access Point
	MA.912.AR.8.AP.3 Given a mathematical and/or real-world
	problem that is modeled with rational functions, solve the
	mathematical problem, or select the graph using key features (in
	terms of context) that represents this model.
MA.912.AR.9 Write and	d solve a system of two- and three-variable equations and
inequalities that descril	be quantities or relationships.
MA.912.AR.9.1	Given a mathematical or real-world context, write and solve a
	system of two-variable linear equations algebraically or
	graphically.
	Access Point
	MA.912.AR.9.AP.1
	Given an algebraic or graphical system of two-variable linear
	equations, select the solution to the system of equations.
MA.912.AR.9.2	Given a mathematical or real-world context, solve a system
WIT 1.9 12.7 HC.9.2	consisting of a two-variable linear equation and a non-linear
	equation algebraically or graphically.
	Access Point
	MA.912.AR.9.AP.2 Solve a system consisting of a two-variable
	linear equation and a quadratic equation algebraically or
	graphically.

MA.912.AR.9.3	Given a mathematical or real-world context, solve a system
	consisting of two-variable linear or non-linear equations
	algebraically or graphically.
	Access Point
	MA.912.AR.9.AP.3 Solve a system consisting of two-variable
	linear or quadratic equations algebraically or graphically.
MA.912.AR.9.4	Graph the solution set of a system of two-variable linear
	inequalities.
	Access Point
	MA.912.AR.9.AP.4 Select the graph of the solution set of a
	system of two-variable linear inequalities.
MA.912.AR.9.5	Graph the solution set of a system of two-variable inequalities.
	Access Point
	MA.912.AR.9.AP.5 Select the graph of the solution set of a
	system of two-variable inequalities.
MA.912.AR.9.6	Given a real-world context, represent constraints as systems of
	linear equations or inequalities. Interpret solutions to problems
	as viable or non-viable options.
	Access Point
	MA.912.AR.9.AP.6 Given a real-world context, as systems of
	linear equations or inequalities with identified constraints, select
	a solution as a viable or non-viable option.
MA.912.AR.9.7	Given a real-world context, represent constraints as systems of
	linear and non-linear equations or inequalities. Interpret
	solutions to problems as viable or non-viable options.
	Access Point
	MA.912.AR.9.AP.7 Given a real-world context, as systems of linear
	and non-linear equations or inequalities with identified constraints,
	select a solution as a viable or non-viable option.

9-12 Functions Strand

MA.912.F.1 Understand, compare and analyze properties of functions.	
MA.912.F.1.1	Given an equation or graph that defines a function, determine the
	function type. Given an input-output table, determine a function
	type that could represent it.
	Access Point
	MA.912.F.1.AP.1a Given an equation or graph that defines a
	function, identify the function type as either linear, quadratic, or exponential.
	MA.912.F.1.AP.1b Given an input-output table with an
	accompanying graph, determine a function type, either linear,
	quadratic, or exponential that could represent it.

MA.912.F.1.2	Given a function represented in function notation, evaluate the
	function for an input in its domain. For a real-world context,
	interpret the output.
	Access Point
	MA.912.F.1.AP.2 Given a function represented in function
	notation, evaluate the function for an input in its domain.
MA.912.F.1.3	Calculate and interpret the average rate of change of a real-world
IVIA.912.1.1.3	situation represented graphically, algebraically or in a table over a
	specified interval.
	Access Point
	MA.912.F.1.AP.3 Given a real-world situation represented
	graphically or algebraically, identify the rate of change as positive,
	negative, zero or undefined.
MA.912.F.1.5	Compare key features of linear and nonlinear functions each
	represented in the same way, such as algebraically, graphically, in
	tables or written descriptions.
	Access Point
	MA.912.F.1.AP.5 Identify key features of linear and quadratic
	functions each represented in the same way algebraically or
	graphically (key features are limited to domain; range; intercepts;
	intervals where the function is increasing, decreasing, positive or
	negative; end behavior).
MA.912.F.1.6	Compare key features of linear and nonlinear functions each
	represented algebraically, graphically, in tables or written
	descriptions.
	Access Point
	MA.912.F.1.AP.6 Identify key features of linear, quadratic or
	exponential functions each represented in a different way
	algebraically or graphically (key features are limited to domain;
	range; intercepts; intervals where the function is increasing,
	decreasing, positive or negative; end behavior).
MA.912.F.1.7	Compare key features of two functions each represented
	algebraically, graphically, in tables or written descriptions.
	Access Point
	MA.912.F.1.AP.7 Compare key features of two functions each
	represented algebraically or graphically.
MA.912.F.1.8	Determine whether a linear, quadratic or exponential function best
1011 1.9 12.1 .1.0	models a given real-world situation.
	Access Point
	MA.912.F.1.AP.8 Select whether a linear or quadratic function
	best models a given real-world situation.
MA.912.F.1.9	Determine whether a function is even, odd or neither when
WIA.912.F.1.9	
	represented algebraically, graphically or in a table.
	Access Point
	MA.912.F.1.AP.9 Select whether a function is even, odd or neither
	when represented algebraically.

MA.912.F.2 Identify	v and describe the effects of transformations on functions. Create
new functions given	
MA.912.F.2.1	Identify the effect on the graph or table of a given function after replacing (x) by $(x) + kk$, (xx) , (kx) and $(xx + kk)$ for specific values of kk .
	Access Point
	MA.912.F.2.AP.1 Select the effect (up, down, left, or right) on the graph of a given function after replacing $f(x)$ by $f(x) + k$ and $f(x + k)$ for specific values of k.
MA.912.F.2.2	Identify the effect on the graph of a given function of two or more transformations defined by adding a real number to the x - or y -values or multiplying the x - or y -values by a real number.
	Access Point MA.912.F.2.AP.2 Identify the effect on the graph of a given function of two or more transformations defined by adding a real number to the <i>x</i> - or <i>y</i> -values.
MA.912.F.2.3	Given the graph or table of (xx) and the graph or table of $(xx) + kk$, (xx) , $(kkxx)$ and $(xx + kk)$, state the type of transformation and find the value of the real number kk .
	Access Point MA.912.F.2.AP.3 Given the graph of a given function after replacing $f(x)$ by $f(x) + k$ and $f(x + k)$, $kf(x)$, for specific values of k select the type of transformation and find the value of the real number k.
MA.912.F.2.5	Given a table, equation or graph that represents a function, create a corresponding table, equation or graph of the transformed function defined by adding a real number to the ?- or ?-values or multiplying the ?- or ?-values by a real number.
	Access Point MA.912.F.2.AP.5 Given a table, equation or graph that represents a function, select a corresponding table, equation or graph of the transformed function defined by adding a real number to the <i>x</i> - or <i>y</i> - values.
MA.912.F.3 Create	new functions from existing functions.
MA.912.F.3.2	Given a mathematical or real-world context, combine two or more functions, limited to linear, quadratic, exponential and polynomial, using arithmetic operations. When appropriate, include domain restrictions for the new function.
	Access Point MA.912.F.3.AP.2 Given a mathematical and/or real-world context, combine two or more functions, limited to linear, quadratic, and polynomial, using arithmetic operations of addition, subtraction, or multiplication.

MA.912.F.3.4	Represent the composition of two functions algebraically or in a
	table. Determine the domain and range of the composite function.
	Access Point
	MA.912.F.3.AP.4 Given a composite function within a
	mathematical or real-world context, identify the domain and range
	of the composite function.
MA.912.F.3.6	Determine whether an inverse function exists by analyzing tables,
	graphs and equations.
	Access Point
	MA.912.F.3.AP.6 Determine whether an inverse function exists by
	analyzing graphs and equations.
MA.912.F.3.7	Represent the inverse of a function algebraically, graphically or in
	a table. Use composition of functions to verify that one function is
	the inverse of the other.
	Access Point
	MA.912.F.3.AP.7 Represent the inverse of a function
	algebraically. Use composition of functions to verify that one
	function is the inverse of the other.

9-12	Financi	al Lite	racy S	trand
7-14	Financi	ai Litt	I acy D	u anu

MA.912.FL.1 Determine simple and compound interest and demonstrate its relationship to functions. Calculate and use net present and net future values.	
MA.912.FL.3.1	Compare simple, compound and continuously compounded interest
	over time.
	Access Point
	MA.912.FL.3.AP.1 Compare simple and compound interest over
	time.
MA.912.FL.3.2	Solve real-world problems involving simple, compound and
	continuously compounded interest.
	Access Point
	MA.912.FL.3.AP.2 Solve real-world problems involving simple and
	compound interest.
MA.912.FL.3.4	Explain the relationship between simple interest and linear growth.
	Explain the relationship between compound interest and exponential
	growth and the relationship between continuously compounded
	interest and exponential growth.
	Access Point
	MA.912.FL.3.AP.4 Identify the relationship between simple interest
	and linear growth. Identify the relationship between compound
	interest and exponential growth.

MA 912 GR 1 Prov	e and apply geometric theorems to solve problems.
MA.912.GR.1.1	Prove relationships and theorems about lines and angles. Solve
WIA.712.0K.1.1	mathematical and real-world problems involving postulates,
	relationships and theorems of lines and angles.
	Access Point
	MA.912.GR.1.AP.1 Use the relationships and theorems about lines
	and angles to solve mathematical or real-world problems involving
	postulates, relationships and theorems of lines and angles.
MA.912.GR.1.2	Prove triangle congruence or similarity using Side-Side, Side-
	Angle-Side, Angle-Side-Angle, Angle-Angle-Side, Angle-Angle and
	Hypotenuse-Leg.
	Access Point
	MA.912.GR.1.AP.2 Identify the triangle congruence or similarity
	criteria; Side-Side-Side, Side-Angle-Side, Angle-Side-Angle, Angle-
	Angle-Side, Angle-Angle and Hypotenuse-Leg.
MA.912.GR.1.3	Prove relationships and theorems about triangles. Solve
	mathematical and real-world problems involving postulates,
	relationships and theorems of triangles.
	Access Point
	MA.912.GR.1.AP.3 Use the relationships and theorems about
	triangles. Solve mathematical and/or real-world problems involving
	postulates, relationships and theorems of triangles.
MA.912.GR.1.4	Prove relationships and theorems about parallelograms. Solve
	mathematical and real-world problems involving postulates,
	relationships and theorems of parallelograms.
	Access Point
	MA.912.GR.1.AP.4 Use the relationships and theorems about
	parallelograms. Solve mathematical and/or real-world problems
	involving postulates, relationships and theorems of parallelograms.
MA.912.GR.1.5	Prove relationships and theorems about trapezoids. Solve
	mathematical and real-world problems involving postulates,
	relationships and theorems of trapezoids.
	Access Point
	MA.912. GR.1. AP.5 Use the relationships and theorems about
	trapezoids. Solve mathematical and/or real-world problems
	involving postulates, relationships and theorems of trapezoids.
MA.912.GR.1.6	Solve mathematical and real-world problems involving congruence
	or similarity in two-dimensional figures.
	Access Point
	MA.912.GR.1.AP.6 Use the definitions of congruent or similar
	figures to solve mathematical and/or real-world problems involving
	two-dimensional figures.
	wo amensional neuros.

9-12 Geometric Reasoning Strand

MA.912.GR.2 Apply	properties of transformations to describe congruence or similarity.
MA.912.GR.2.1	Given a preimage and image, describe the transformation and
	represent the transformation algebraically using coordinates.
	Access Point
	MA.912.GR.2.AP.1a Given a preimage and image, identify the
	transformation.
	MA.912.GR.2.AP.1b Select the algebraic coordinates that represent
	the transformation.
MA.912.GR.2.2	Identify transformations that do or do not preserve distance.
	Access Point
	MA.912.GR.2.AP.2 Select a transformation that preserves distance.
MA.912.GR.2.3	Identify a sequence of transformations that will map a given figure
	onto itself or onto another congruent or similar figure.
	Access Point
	MA.912.GR.2.AP.3 Identify a given sequence of transformations,
	that includes translations or reflections, that will map a given figure
	onto itself or onto another congruent figure.
MA.912.GR.2.5	Given a geometric figure and a sequence of transformations, draw
	the transformed figure on a coordinate plane.
	Access Point
	MA.912.GR.2.AP.5 Given a geometric figure and a sequence of
	transformations, select the transformed figure on a coordinate plane.
MA.912.GR.2.6	Apply rigid transformations to map one figure onto another to justify
	that the two figures are congruent.
	Access Point
	MA.912.GR.2.AP.6 Use rigid transformations that includes
	translations or reflections to map one figure onto another to show
	that the two figures are congruent.
MA.912.GR.2.8	Apply an appropriate transformation to map one figure onto another
	to justify that the two figures are similar.
	Access Point
	MA.912.GR.2.AP.8 Identify an appropriate transformation to map
	one figure onto another to show that the two figures are similar.
MA.912.GR.3 Use coordinate geometry to solve problems or prove relationships.	
MA.912.GR.3.1	Determine the weighted average of two or more points on a line.
	Access Point
	MA.912.GR.3.AP.1 Select the weighted average of two or more
	points on a line.

MA.912.GR.3.2	Given a mathematical context, use coordinate geometry to classify or	
	justify definitions, properties and theorems involving circles,	
	triangles or quadrilaterals	
	Access Point	
	MA.912.GR.3.AP.2 Use coordinate geometry to classify definitions,	
	properties and theorems involving circles, triangles, or quadrilaterals.	
MA.912.GR.3.3	Use coordinate geometry to solve mathematical and real-world	
	geometric problems involving lines, circles, triangles and	
	quadrilaterals.	
	Access Point	
	MA.912.GR.3.AP.3 Use coordinate geometry to solve mathematical	
	geometric problems involving lines, triangles and quadrilaterals.	
MA.912.GR.3.4	Use coordinate geometry to solve mathematical and real-world	
	problems on the coordinate plane involving perimeter or area of	
	polygons.	
	Access Point	
	MA.912.GR.3.AP.4 Solve mathematical and/or real-world problems	
	on the coordinate plane involving perimeter or area of a three- or	
	four-sided polygon.	
MA.912.GR.4 Use geometric measurement and dimensions to solve problems.		
MA.912.GR.4.1	Identify the shapes of two-dimensional cross sections of three-	
	dimensional figures.	
	Access Point	
	MA.912.GR.4.AP.1 Identify the shape of a two-dimensional cross	
	section of a three-dimensional figure.	
MA.912.GR.4.2	Identify three-dimensional objects generated by rotations of two-	
	dimensional figures.	
	Access Point	
	MA.912.GR.4.AP.2 Identify a three-dimensional object generated by	
	the rotation of a two-dimensional figure.	
MA.912.GR.4.3	Extend previous understanding of scale drawings and scale factors to	
	determine how dilations affect the area of two-dimensional figures	
	and the surface area or volume of three-dimensional figures.	
	Access Point	
	MA.912.GR.4.AP.3 Select the effect of a dilation on the area of two-	
	dimensional figures and/or surface area or volume of three-	
	dimensional figures.	
MA.912.GR.4.4	Solve mathematical and real-world problems involving the area of	
	two-dimensional figures.	
	Access Point	
	MA.912.GR.4.AP.4 Solve mathematical and/or real-world problems	
	involving the area of triangles, squares, circles or rectangles.	

MA.912.GR.4.5	Solve mathematical and real-world problems involving the volume	
	of three-dimensional figures limited to cylinders, pyramids, prisms,	
	cones and spheres.	
	Access Point	
	MA.912.GR.4.AP.5 Solve mathematical or real-world problems	
	involving the volume of three-dimensional figures limited to	
	cylinders, pyramids, prisms, or cones.	
MA.912.GR.4.6	Solve mathematical and real-world problems involving the surface	
	area of three-dimensional figures limited to cylinders, pyramids,	
	prisms, cones and spheres.	
	Access Point	
	MA.912.GR.4.AP.6 Solve mathematical or real-world problems	
	involving the surface area of three-dimensional figures limited to	
	cylinders, pyramids, prisms, and cones.	
MA.912.GR.5 Make formal geometric constructions with a variety of tools and methods.		
MA.912.GR.5.1	Construct a copy of a segment or an angle.	
	Access Point	
	MA.912.GR.5.AP.1 Construct a copy of a segment.	
MA.912.GR.5.2	Construct the bisector of a segment or an angle, including the	
	perpendicular bisector of a line segment.	
	Access Point	
	MA.912.GR.5.AP.2 Construct the bisector of a segment, including	
	the perpendicular bisector of a line segment.	
MA.912.GR.5.3	Construct the inscribed and circumscribed circles of a triangle.	
	Access Point	
	MA.912.GR.5.AP.3 Select the inscribed and circumscribed circles of	
	a triangle.	
*	operties and theorems related to circles.	
MA.912.GR.6.1	Solve mathematical and real-world problems involving the length of	
	a secant, tangent, segment or chord in a given circle.	
	Access Point	
	MA.912.GR.6.AP.1 Identify and describe the relationship involving	
	the length of a secant, tangent, segment or chord in a given circle.	
MA.912.GR.6.2	Solve mathematical and real-world problems involving the measures	
	of arcs and related angles.	
	Access Point	
	MA.912.GR.6.AP.2 Identify the relationship involving the measures	
	of arcs and related angles, limited to central, inscribed and	
	intersections of a chord, secants or tangents.	

MA 012 CD (2	
MA.912.GR.6.3	Solve mathematical problems involving triangles and quadrilaterals
	inscribed in a circle.
	Access Point
	MA.912.GR.6.AP.3 Identify and describe the relationship involving
	triangles and quadrilaterals inscribed in a circle.
MA.912.GR.6.4	Solve mathematical and real-world problems involving the arc length
	and area of a sector in a given circle.
	Access Point
	MA.912.GR.6.AP.4 Identify and describe the relationship involving
	the arc length and area of a sector in a given circle.
MA.912.GR.7 Apply	y geometric and algebraic representations of conic sections.
MA.912.GR.7.2	Given a mathematical or real-world context, derive and create the
	equation of a circle using key features.
	Access Point
	MA.912.GR.7.AP.2 Create the equation of a circle when given the
	center and radius.
MA.912.GR.7.3	Graph and solve mathematical and real-world problems that are
	modeled with an equation of a circle. Determine and interpret key
	features in terms of the context.
	Access Point
	MA.912.GR.7.AP.3 Given an equation of a circle, identify center
	and radius, and graph the circle.

9-12 Data Analysis and Probability Strand

MA.912.DP.1 Summarize, represent and interpret categorical and numerical data with one and two variables.	
MA.912.DP.1.1	Given a set of data, select an appropriate method to represent the data, depending on whether it is numerical or categorical data and on whether it is univariate or bivariate.
	Access Point MA.912.DP.1.AP.1a Given a set of data, select an appropriate table or graph to represent categorical data and whether it is univariate or bivariate.
	MA.912.DP.1.AP.1b Given a set of data, select an appropriate table or graph to represent numerical data and whether it is univariate or bivariate.
MA.912.DP.1.2	Interpret data distributions represented in various ways. State whether the data is numerical or categorical, whether it is univariate or bivariate and interpret the different components and quantities in the display.
	Access Point MA.912.DP.1.AP.2 Given a univariate or bivariate data distribution (numerical or categorical), identify the different components and quantities in the display.

MA.912.DP.1.3	Explain the difference between correlation and causation in the
	contexts of both numerical and categorical data.
	Access Point
	MA.912.DP.1.AP.3 Identify whether the data is explained by
	correlation or causation in the contexts of both numerical and
	categorical data.
MA.912.DP.1.4	Estimate a population total, mean or percentage using data from a
	sample survey; develop a margin of error through the use of
	simulation.
	Access Point
	MA.912.DP.1.AP.4 Given the mean or percentage and the margin of
	error from a sample survey, identify a population total.
MA.912.DP.2 Solve	problems involving univariate and bivariate numerical data.
MA.912.DP.2.4	Fit a linear function to bivariate numerical data that suggests a linear
	association and interpret the slope and y-intercept of the model. Use
	the model to solve real-world problems in terms of the context of the
	data.
	Access Point
	MA.912.DP.2.AP.4 Fit a linear function to bivariate numerical data
	that suggests a linear association and interpret the slope and y-
	intercept of the model.
MA.912.DP.2.6	Compute the correlation coefficient of a linear model using
	technology. Interpret the strength and direction of the correlation
	coefficient.
	Access Point
	MA.912.DP.2.AP.6 Given a scatter plot with a line of fit and
	residuals, determine the strength and direction of the correlation.
	Interpret strength and direction within a real-world context.
MA.912.DP.2.8	Fit a quadratic function to bivariate numerical data that suggests a
	quadratic association and interpret any intercepts or the vertex of the
	model. Use the model to solve real-world problems in terms of the
	context of the data.
	Access Point
	MA.912.DP.2.AP.8 Given a scatter plot, select a quadratic function
	that fits the data the best.
MA.912.DP.2.9	Fit an exponential function to bivariate numerical data that suggests
	an exponential association. Use the model to solve real-world
	problems in terms of the context of the data.
	Access Point
	MA.912.DP.2.AP.9 Given a scatter plot, select an exponential
	function that fits the data the best.

MA.912.DP.3 Solve problems involving categorical data.	
MA.912.DP.3.1	Construct a two-way frequency table summarizing bivariate
	categorical data. Interpret joint and marginal frequencies and
	determine possible associations in terms of a real-world context.
	Access Point
	MA.912.DP.3.AP.1 When given a two-way frequency table
	summarizing bivariate categorical data, identify joint and marginal
	frequencies.

9-12 Trigonometry

<i>MA.912.T.1 Define and use trigonometric ratios, identities or functions to solve problems.</i>	
MA.912.T.1.1	Define trigonometric ratios for acute angles in right triangles.
	Access Point
	MA.912.T.1.AP.1 Select a trigonometric ratio for acute angles in
	right triangles limited to sine or cosine.
MA.912.T.1.2	Solve mathematical and real-world problems involving right triangles
	using trigonometric ratios and the Pythagorean Theorem.
	Access Point
	MA.912.T.1.AP.2 Given a mathematical and/or real-world problem
	involving right triangles, solve using trigonometric ratio or the
	Pythagorean Theorem.

9-12 Logic and Theory Strand

MA.912.LT.4 Develop an understanding of the fundamentals of propositional logic,		
arguments and methods of proof.		
MA.912.LT.4.3	Identify and accurately interpret "ifthen," "if and only if," "all" and "not" statements. Find the converse, inverse and contrapositive of a statement.	
	Access Point MA.912.LT.4.AP.3 Identify and accurately interpret "ifthen," "if and only if," "all" or "not" statements.	
MA.912.LT.4.10	Judge the validity of arguments and give counterexamples to disprove statements.	
	Access Point MA.912.LT.4.AP.10 Select the validity of an argument or give counterexamples to disprove statements.	