Benchmarks for Excellent Student

 Thinking (B.E.S.T.)Mathematics
2022 Access Points-Alternate Academic Achievement Standards (AP-AAAS)

Grade Kindergarten -12

Kindergarten B.E.S.T. Standards Access Points	
Number Sense and Operations	
MA.K.NSO. 1 Develop an understanding for counting using objects in a set.	
MA.K.NSO.1.1	Given a group of up to 20 objects, count the number of objects in that group and represent the number of objects with a written numeral. State the number of objects in a rearrangement of that group without recounting.
	Access Point MA.K.NSO.1.AP. 1 Given a group of up to 10 objects, count the number of objects in that group and represent the number by identifying the written numeral. Express the number of objects in a rearrangement of that group without recounting.
MA.K.NSO.1.2	Given a number from 0 to 20, count out that many objects.
	Access Point MA.K.NSO.1.AP. 2 Given a number from 0 to 10, count out that many objects.
MA.K.NSO.1.3	Identify positions of objects within a sequence using the words "first," "second," "third," "fourth" or "fifth."
	Access Point MA.K.NSO.1.AP. 3 Identify the "first," "second" or "third" object within a sequence.
MA.K.NSO.1.4	Compare the number of objects from 0 to 20 in two groups using the terms less than, equal to or greater than.
	Access Point MA.K.NSO.1.AP. 4 Compare the number of objects from 0 to 10 in two groups to determine which group is greater or less, or if the number of objects in the two groups are equal.
MA.K.NSO. 2 Recite number names sequentially within 100 and develop an understanding for place value.	
MA.K.NSO.2.1	Recite the number names to 100 by ones and by tens. Starting at a given number, count forward within 100 and backward within 20.
	Access Point MA.K.NSO.2.AP. 1 Express number names from 1 to 100 by ones and from 10 to 100 by tens. Starting at a given number, count forward to 20 and backwards within 10.
MA.K.NSO.2.2	Represent whole numbers from 10 to 20 , using a unit of ten and a group of ones, with objects, drawings, and expressions or equations.
	Access Point MA.K.NSO.2.AP. 2 Represent whole numbers from 10 to 19, using one group of 10 ones and some further ones, with objects, drawings or verbalization.

MA.K.NSO.2.3	Locate, order and compare numbers from 0 to 20 using the number line and terms less than, equal to or greater than.
	Access Point MA.K.NSO.2.AP.3 Locate and compare two numbers from 0 to 10 to determine which number is less than, equal to or greater than the other number.
MA.K.NSO.3 Develop an understanding of addition and subtraction operations with one-digit whole numbers.	
MA.K.NSO.3.1	Explore addition of two whole numbers from 0 to 10, and related subtraction facts.
	Access Point MA.K.NSO.3.AP.1 Explore addition and subtraction of two whole numbers within 5 using objects.
MA.K.NSO.3.2	Add two one-digit whole numbers with sums from 0 to 10 and subtract using related facts with procedural reliability.
	Access Point MA.K.NSO.3.AP.2 Apply a strategy for adding and subtracting two one-digit whole numbers to solve within 5.

Algebraic Reasoning

MA.K.AR. 1 Represent and solve addition problems with sums between 0 and 10 and subtraction problems using related facts.

MA.K.AR.1.1	For any number from 1 to 9, find the number that makes 10 when added to the given number.
	Access Point MA.K.AR.1.AP. 1 For any number from 1 to 9, use objects to find the number that makes 10 when added to the given number.

MA.K.AR.1.2	Given a number from 0 to 10, find the different ways it can be represented as the sum of two numbers.
Access Point MA.K.AR.1.AP.2 Given a number from 0 to 5, find the different ways it can be represented as the sum of two numbers.	
MA.K.AR.1.3	Solve addition and subtraction real-world problems using objects, drawings or equations to represent the problem.
	Access Point MA.K.AR.1.AP.3 Solve addition and subtraction real-world problems within 5 using objects, drawings or equations to represent the problem.
MA.K.AR.2 Develop an understanding of the equal sign.	

objects or drawings.\end{array}\right|\)| MA.K.AR.2.1 | Access Point
 MA.K.AR.2.AP.1 Show that an addition or subtraction equation
 within 5 is true using objects or drawings. |
| :--- | :--- |
| MA.K.M.1 Identify and compare measurable attributes of objects. | |
| MA.K.M.1.1 | Identify the attributes of a single object that can be measured such
 as length, volume or weight. |
| | Access Point
 MA.K.M.1.AP.1 Explore the attributes of a single object that can
 be measured such as length or weight. |
| MA.K.M.1.2 | Directly compare two objects that have an attribute which can be
 measured in common. Express the comparison using language to
 describe the difference. |
| Access Point | |
| MA.K.M.1.AP.2 Directly compare two objects to determine which | |
| is longer/shorter or heavier/lighter. | |

Geometric Reasoning

MA.K.GR.1 Identify, compare and compose two- and three-dimensional figures.	
MA.K.GR.1.1	Identify two- and three-dimensional figures regardless of their size or orientation. Figures are limited to circles, triangles, rectangles, squares, spheres, cubes, cones and cylinders.
	Access Point MA.K.GR.1.AP.1 Identify two- and three-dimensional figures regardless of their size. Figures are limited to circles, triangles, rectangles, squares, spheres, cubes, cones and cylinders.
MA.K.GR.1.2	Compare two-dimensional figures based on their similarities, differences and positions. Sort two-dimensional figures based on their similarities and differences. Figures are limited to circles, triangles, rectangles and squares.
	Access Point MA.K.GR.1.AP.2a Sort two-dimensional figures based on their similarities. Figures are limited to circles, triangles, rectangles and squares.
	MA.K.GR.1.AP.2b Use informal spatial language to describe the relative positions of two-dimensional figures (e.g., above, below, beside, next to, under).
MA.K.GR.1.3	Compare three-dimensional figures based on their similarities, differences and positions. Sort three-dimensional figures based on their similarities and differences. Figures are limited to spheres, cubes, cones and cylinders.
	Access Point MA.K.GR.1.AP.3a Sort three-dimensional figures based on their similarities. Figures are limited to spheres, cubes, cones and cylinders.
MA.K.GR.1.AP.3b Use informal spatial language to describe the	
relative positions of three-dimensional figures (e.g., above, below,	
beside, next to, under).	

$\begin{array}{l}$| MA.K.GR.1.5 | $\begin{array}{l}\text { Combine two-dimensional figures to form a given composite } \\ \text { figure. Figures used to form a composite shape are limited to } \\ \text { triangles, rectangles and squares. }\end{array}$ | | |
| :--- | :--- | :---: | :---: |
| | $\begin{array}{l}\text { Access Point } \\ \text { MA.K.GR.1.AP.5 Recognize that a different figure can be formed } \\ \text { by combining two smaller two-dimensional figures. Figures used } \\ \text { to form a composite shape are limited to triangles, rectangles and } \\ \text { squares. }\end{array}$ | | |
| Data Analysis and Probability | | | |

\hline MA.K.DP.1 Develop an understanding for collecting, representing and comparing data.

\hline MA.K.DP.1.1

\(\left.$$
\begin{array}{l}\text { Collect and sort objects into categories and compare the categories } \\
\text { by counting the objects in each category. Report the results } \\
\text { verbally, with a written numeral or with drawings. }\end{array}
$$

\hline\end{array} \begin{array}{l}Access Point

MA.K.DP.1.AP.1 Sort objects by characteristic (e.g., size, shape or

color). Count the objects in each category and report the results.\end{array}\right]\)

Grade 1 B.E.S.T. Standards Access Points

Number Sense and Operations

MA.1.NSO. 1 Extend counting sequences and understand the place value of two-digit numbers.	
MA.1.NSO.1.1	Starting at a given number, count forward and backwards within 120 by ones. Skip count by 2 s to 20 and by 5 s to 100 .
	Access Point MA.1.NSO.1.AP. 1 Starting at a given number, count forward within 100 and backwards within 20 by ones. Skip count by 5 s from 5 to 100.
MA.1.NSO.1.2	Read numbers from 0 to 100 written in standard form, expanded form and word form. Write numbers from 0 to 100 using standard form and expanded form.
	Access Point MA.1.NSO.1.AP. 2 Read numbers from 0 to 20 written in standard form and expanded form. Generate numbers from 0 to 20 using standard form.
MA.1.NSO.1.3	Compose and decompose two-digit numbers in multiple ways using tens and ones. Demonstrate each composition or decomposition with objects, drawings, and expressions or equations.
	Access Point MA.1.NSO.1.AP. 3 Compose and decompose numbers up to 20 using tens and ones. Demonstrate each composition or decomposition with objects, drawings, and expressions or equations.
MA.1.NSO.1.4	Plot, order and compare whole numbers up to 100.
	Access Point MA.1.NSO.1.AP. 4 Order (e.g., 5, 9, 13) and compare (e.g., $11<$ 19) whole numbers up to 20 .
MA.1.NSO. 2 Develop an understanding of addition and subtraction operations with one- and two-digit numbers.	
MA.1.NSO.2.1	Recall addition facts with sums to 10 and related subtraction facts with automaticity.
	Access Point MA.1.NSO.2.AP. 1 Recall addition facts with sums to 5 and related subtraction facts.
MA.1.NSO.2.2	Add two whole numbers with sums from 0 to 20 , and subtract using related facts with procedural reliability.
	Access Point MA.1.NSO.2.AP. 2 Apply a strategy for adding and subtracting two one-digit whole numbers to solve within 10 .

MA.1.NSO.2.3	Identify the number that is one more, one less, ten more and ten less than a given two-digit number.
	Access Point MA.1.NSO.2.AP.3 Identify the number that is one more and one less than a given number within 20.
MA.1.NSO.2.4	Explore the addition of a two-digit number and a one-digit number with sums to 100.
	Access Point MA.1.NSO.2.AP.4 Explore the addition of a two-digit number from 11 to 19 and a one-digit number.
MA.1.NSO.2.5	Explore subtraction of a one-digit number from a two-digit number.Access Point MA.1.NSO.2.AP.5 Explore subtraction of a one-digit number from a two-digit number from 11 to 19.
MA.1.FR.1 Develop and fourths.	an understanding of fractions by partitioning shapes into halves
MA.1.FR.1.1	Partition circles and rectangles into two and four equal-sized parts. Name the parts of the whole using appropriate language including halves or fourths.
	Access Point MA.1.FR.1.AP.1 Partition circles and rectangles into two and four equal-sized parts. Recognize the parts of the whole as halves or fourths.

Algebraic Reasoning MA.1.AR.1 Solve addition problems with sums between 0 and 20 and subtraction problems using related facts. MA.1.AR.1.1 Apply properties of addition to find a sum of three or more whole numbers.Access Point MA.1.AR.1.AP.1 Apply the commutative property of addition to find a sum of two whole numbers within 20.	
MA.1.AR.1.2	Solve addition and subtraction real-world problems using objects, drawings or equations to represent the problem.
	Access Point MA.1.AR.1.AP.2 Solve addition and subtraction real-world problems within 10 using objects, drawings or equations to represent the problem.

MA.1.AR. 2 Develop an understanding of the relationship between addition and subtraction.	
MA.1.AR.2.1	Restate a subtraction problem as a missing addend problem using the relationship between addition and subtraction.
	Access Point MA.1.AR.2.AP. 1 Use the relationship between addition and subtraction to explore subtraction as addition with a missing addend.
MA.1.AR.2.2	Determine and explain if equations involving addition or subtraction are true or false.
	Access Point MA.1.AR.2.AP. 2 Determine if addition or subtraction equations (with no more than three terms) are true or false. Sums may not exceed 10 and their related subtraction facts.
MA.1.AR.2.3	Determine the unknown whole number in an addition or subtraction equation, relating three whole numbers, with the unknown in any position.
	Access Point MA.1.AR.2.AP. 3 Determine the unknown whole number in an addition or subtraction equation, relating three whole numbers, with the result unknown (e.g., $8-2=$ \qquad \qquad $=7+3$). Sums may not exceed 10 and their related subtraction facts.
Measurement	
MA.1.M.1 Compare and measure the length of objects.	
MA.1.M.1.1	Estimate the length of an object to the nearest inch. Measure the length of an object to the nearest inch or centimeter.
	Access Point MA.1.M.1.AP.1.a Use a ruler to measure the length of an object with exact whole units to the nearest inch. MA.1.M.1.AP.1.b Explore familiar objects that can be used to develop a mental measurement benchmark to understand the relative size of an inch.
MA.1.M.1.2	Compare and order the length of up to three objects using direct and indirect comparison.
	Access Point MA.1.M.1.AP. 2 Compare and order the length of up to three objects using direct comparison.
MA.1.M. 2 Tell time and identify the value of coins and combinations of coins and dollar bills.	
MA.1.M.2.1	Using analog and digital clocks, tell and write time in hours and half-hours.
	Access Point MA.1.M.2.AP. 1 Using analog and digital clocks, express the time in hours.

MA.1.M.2.2	Identify pennies, nickels, dimes and quarters, and express their values using the ϕ symbol. State how many of each coin equal a dollar.
	Access Point MA.1.M.2.AP.2 Identify the names and values of pennies, nickels, dimes and quarters.
MA.1.M.2.3	Find the value of combinations of pennies, nickels and dimes up to one dollar, and the value of combinations of one-, five- and ten- dollar bills up to \$100. Use the \varnothing and \$ symbols appropriately.
	Access Point MA.1.M.2.AP.3a Find the value of a group of only pennies, only nickels or only dimes up to \$1.
	MA.1.M.2.AP.3b Find the value of a group of only one-, only five- or only ten-dollar bills up to \$100.
MA.1.GR.1 Identify defining attributes.	and analyze two- and three-dimensional figures based on their
MA.1.GR.1.1	Identify, compare and sort two- and three-dimensional figures based on their defining attributes. Figures are limited to circles, semi- circles, triangles, rectangles, squares, trapezoids, hexagons, spheres, cubes, rectangular prisms, cones and cylinders.
	Access Point MA.1.GR.1.AP.1 Sort and identify two- or three-dimensional figures based on their defining attributes. (e.g., number of sides, vertices, edges, faces, etc., rather than color, orientation or size). Figures are limited to circles, semi-circles, triangles, rectangles, squares, trapezoids, hexagons, spheres, cubes, rectangular prisms, cones and cylinders.
MA.1.GR.1.2	Sketch two-dimensional figures when given defining attributes. Figures are limited to triangles, rectangles, squares and hexagons.
Access Point MA.1.GR.1.AP.2 Produce two-dimensional figures when given defining attributes. Figures are limited to triangles, rectangles and squares.	

MA.1.GR.1.3	Compose and decompose two- and three-dimensional figures. Figures are limited to semi-circles, triangles, rectangles, squares, trapezoids, hexagons, cubes, rectangular prisms, cones and cylinders.
	Access Point MA.1.GR.1.AP.3 Recognize that different figures can be formed by putting together smaller two- or three-dimensional figures and that smaller figures can be formed by taking apart larger two- or three- dimensional figures. Figures are limited to semi-circles, triangles, rectangles, squares, trapezoids, hexagons, cubes, rectangular prisms, cones and cylinders.
MA.1.GR.1.4	Given a real-world object, identify parts that are modeled by two- and three-dimensional figures. Figures are limited to semi-circles, triangles, rectangles, squares and hexagons, spheres, cubes, rectangular prisms, cones and cylinders
	Access Point MA.1.GR.1.AP.4 Explore real-world objects with parts that can be modeled by a given two- or three-dimensional figure. Figures are limited to semi-circles, triangles, rectangles, squares and hexagons, spheres, cubes, rectangular prisms, cones and cylinders.

Data Analysis and Probability

MA.1.DP.1 Collect, represent and interpret data tally marks and using pictographs.	
MA.1.DP.1.1	Collect data into categories and represent the results using tally marks or pictographs.
	Access Point MA.1.DP.1.AP.1 Sort data into two categories and represent the results using tally marks or pictographs.
MA.1.DP.1.2	Interpret data represented with tally marks or pictographs by calculating the total number of data points and comparing the totals of different categories.
	Access Point MA.1.DP.1.AP.2 Interpret data represented with tally marks or pictographs to determine how many in each category and compare the values of two categories of data in terms of more or less.

Grade 2 B.E.S.T. Standards Access Points

Number Sense and Operations

MA.2.NSO. 1 Understand the place value of three-digit numbers.

MA.2.NSO.1.1	Read and write numbers from 0 to 1,000 using standard form, expanded form and word form.
	Access Point MA.2.NSO.1.AP. 1 Read and generate numbers from 0 to 100 using standard form and expanded form.
MA.2.NSO.1.2	Compose and decompose three-digit numbers in multiple ways using hundreds, tens and ones. Demonstrate each composition or decomposition with objects, drawings, and expressions or equations.
	Access Point MA.2.NSO.1.AP. 2 Compose and decompose two-digit numbers using tens and ones. Demonstrate each composition or decomposition with objects, drawings, expressions or equations.
MA.2.NSO.1.3	Plot, order and compare whole numbers up to 1,000 .
	Access Point MA.2.NSO.1.AP. 3 Plot, order and compare whole numbers up to 100.
MA.2.NSO.1.4	Round whole numbers from 0 to 100 to the nearest 10.
	Access Point MA.2.NSO.1.AP. 4 Round whole numbers from 0 to 100 to the nearest 10 with visual support.
MA.2.NSO. 2 Add and subtract two- and three-digit whole numbers.	
MA.2.NSO.2.1	Recall addition facts with sums to 20 and related subtraction facts with automaticity.
	Access Point MA.2.NSO.2.AP. 1 Recall addition facts with sums to 10 and related subtraction facts.
MA.2.NSO.2.2	Identify the number that is ten more, ten less, one hundred more and one hundred less than a given three-digit number.
	Access Point MA.2.NSO.2.AP. 2 Identify the number that is ten more or ten less than a given two-digit number.
MA.2.NSO.2.3	Add two whole numbers with sums up to 100 with procedural reliability. Subtract a whole number from a whole number, each no larger than 100, with procedural reliability.
	Access Point MA.2.NSO.2.AP. 3 Apply a strategy for adding and subtracting a two-digit number (from 11 to 19) and a single digit whole number.

$\begin{array}{l}$| MA.2.NSO.2.4 | $\begin{array}{l}\text { Explore the addition of two whole numbers with sums up to 1,000. } \\ \text { Explore the subtraction of a whole number from a whole number, } \\ \text { each no larger than 1,000. }\end{array}$ |
| :--- | :--- |
| | $\begin{array}{l}\text { Access Point } \\ \text { MA.2.NSO.2.AP.4 Explore the addition of a two-digit and a single- } \\ \text { digit whole number with sums up to 100. Explore the subtraction of } \\ \text { a one-digit from a two-digit whole number. }\end{array}$ |
| Fractions | |

\hline MA.2.FR.1 Develop an understanding of fractions.

\hline MA.2.FR.1.1

$\left.\begin{array}{l}\text { Partition circles and rectangles into two, three or four equal-sized } \\
\text { parts. Name the parts using appropriate language, and describe the } \\
\text { whole as two halves, three thirds or four fourths. }\end{array} \\
\hline\end{array} \begin{array}{l}\text { Access Point } \\
\text { MA.2.FR.1.AP.1 Partition circles and rectangles into two, three or } \\
\text { four equal-sized parts. Recognize the parts of the whole as halves, } \\
\text { thirds or fourths. Explore the whole as two halves, three thirds or } \\
\text { four fourths. }\end{array}\right\}$

Algebraic Reasoning
MA.2.AR. 1 Solve addition problems with sums between 0 and 100 and related subtraction problems.

MA.2.AR.1.1	Solve one- and two-step addition and subtraction real-world problems.
	Access Point MA.2.AR.1.AP.1 Solve one-step addition and subtraction real- world problems within 20 using objects.
MA.2.AR.2 Demonstrate an understanding of equality and addition and subtraction.	
MA.2.AR.2.1	Determine and explain whether equations involving addition and subtraction are true or false.
	Access Point MA.2.AR.2.AP.1 Determine if addition or subtraction equations with no more than three terms are true or false. Sums may not exceed 20 and their related subtraction facts.

MA.2.AR.2.2	Determine the unknown whole number in an addition or subtraction equation, relating three or four whole numbers, with the unknown in any position.
	Access Point MA.2.AR.2.AP. 2 Determine the unknown whole number in an addition or subtraction equation, relating three whole numbers, with the change or result unknown (e.g., $7+_{-}=10,10-3=■$). Sums may not exceed 20 and their related subtraction facts.
MA.2.AR. 3 Develop an understanding of multiplication.	
MA.2.AR.3.1	Represent an even number using two equal groups or two equal addends. Represent an odd number using two equal groups with one left over or two equal addends plus 1.
	Access Point MA.2.AR.3.AP. 1 Explore the concept of odd and even by pairing objects to represent an even number using two equal groups or represent an odd number by using two equal groups with one left over. Group of objects may not exceed 20.
MA.2.AR.3.2	Use repeated addition to find the total number of objects in a collection of equal groups. Represent the total number of objects using rectangular arrays and equations.
	Access Point MA.2.AR.3.AP. 2 Explore using repeated addition to find the total number of objects represented in a collection of equal groups (e.g., 3 groups of 2 objects) or in a rectangular array (e.g., 3 rows of 2 objects). Total objects may not exceed 20 .
Measurement	
MA.2.M.1 Measure the length of objects and solve problems involving length.	
MA.2.M.1.1	Estimate and measure the length of an object to the nearest inch, foot, yard, centimeter or meter by selecting and using an appropriate tool.
	Access Point MA.2.M.1.AP.1.a Measure the length of an object to the nearest inch, foot and or yard when given the appropriate tool. MA.2.M.1.AP.1.b Explore estimation strategies by developing measurement benchmarks of familiar objects that could be used to make reasonable estimates of length to the nearest inch, foot, or yard.

MA.2.M.1.2	Measure the lengths of two objects using the same unit and determine the difference between their measurements.
	Access Point MA.2.M.1.AP. 2 Measure the lengths of two objects using the same unit (i.e., inch, foot, yard) and determine the difference between their measurements.
MA.2.M.1.3	Solve one- and two-step real-world measurement problems involving addition and subtraction of lengths given in the same units.
	Access Point MA.2.M.1.AP. 3 Solve one-step real-world measurement problems involving addition and subtraction of lengths within 20 given in the same unit (i.e., inch, foot, yard).
MA.2.M.2 Tell time and solve problems involving money.	
MA.2.M.2.1	Using analog and digital clocks, tell and write time to the nearest five minutes using a.m. and p.m. appropriately. Express portions of an hour using the fractional terms half an hour, half past, quarter of an hour, quarter after and quarter til.
	Access Point MA.2.M.2.AP. 1 Using analog and digital clocks, express the time in hours and half hours. Explore the concept of a.m. and p.m.
MA.2.M.2.2	Solve one- and two-step addition and subtraction real-world problems involving either dollar bills within $\$ 100$ or coins within 100ϕ using $\$$ and ϕ symbols appropriately.
	Access Point MA.2.M.2.AP. 2 Solve one-step addition and subtraction real-world problems involving either dollar bills within $\$ 20$ or coins within 20申. Explore using \$ for dollar bills and ϕ symbol for coins.
Geometric Reasoning	
MA.2.GR. 1 Identify and analyze two-dimensional figures and identify lines of symmetry.	
MA.2.GR.1.1	Identify and draw two-dimensional figures based on their defining attributes. Figures are limited to triangles, rectangles, squares, pentagons, hexagons and octagons.
	Access Point MA.2.GR.1.AP. 1 Identify and produce two-dimensional figures when given defining attributes. Figures are limited to triangles, rectangles, hexagons and squares.
MA.2.GR.1.2	Categorize two-dimensional figures based on the number and length of sides, number of vertices, whether they are closed or not and whether the edges are curved or straight.
	Access Point MA.2.GR.1.AP. 2 Sort two-dimensional figures based on the number of sides, number of vertices, whether they are closed or open and whether the sides are curved or straight.

MA.2.GR.1.3	Identify line(s) of symmetry for a two-dimensional figure.
	Access Point MA.2.GR.1.AP. 3 Identify a line of symmetry for a two-dimensional figure.
MA.2.GR. 2 Describe perimeter and find the perimeter of polygons.	
MA.2.GR.2.1	Explore perimeter as an attribute of a figure by placing unit segments along the boundary without gaps or overlaps. Find perimeters of rectangles by counting unit segments.
	Access Point MA.2.GR.2.AP. 1 Explore perimeter as an attribute of a figure that can be measured by placing unit segments along the boundary without gaps or overlaps. Find perimeters of rectangles by counting unit segments.
MA.2.GR.2.2	Find the perimeter of a polygon with whole-number side lengths. Polygons are limited to triangles, rectangles, squares and pentagons.
	Access Point MA.2.GR.2.AP. 2 Find the perimeter of a polygon with wholenumber side lengths given. Polygons are limited to triangles, rectangles and squares.
Data Analysis and Probability	
MA.2.DP. 1 Collect, categorize, represent and interpret data using appropriate titles, labels and units.	
MA.2.DP.1.1	Collect, categorize and represent data using tally marks, tables, pictographs or bar graphs. Use appropriate titles, labels and units.
	Access Point MA.2.DP.1.AP. 1 Sort data into up to three categories and represent the results using tally marks, tables, pictographs or bar graphs. Align data with given title, labels and units.
MA.2.DP.1.2	Interpret data represented with tally marks, tables, pictographs or bar graphs including solving addition and subtraction problems.
	Access Point MA.2.DP.1.AP. 2 Interpret data represented with tally marks, tables, pictographs or bar graphs to solve one-step put-together and takeapart problems. Pictograph symbols and bar graph intervals may only represent a quantity of 1 .

Grade 3 B.E.S.T. Standards Access Points

Number Sense and Operations

MA.3.NSO. 1 Understand the place value of four-digit numbers.

MA.3.NSO.1.1	Read and write numbers from 0 to 10,000 using standard form, expanded form and word form.
	Access Point MA.3.NSO.1.AP. 1 Read and generate numbers from 0 to 1,000 using standard form and expanded form.
MA.3.NSO.1.2	Compose and decompose four-digit numbers in multiple ways using thousands, hundreds, tens and ones. Demonstrate each composition or decomposition using objects, drawings, and expressions or equations.
	Access Point MA.3.NSO.1.AP. 2 Compose and decompose three-digit numbers using hundreds, tens and ones. Demonstrate each composition or decomposition with objects, drawings, expressions or equations.
MA.3.NSO.1.3	Plot, order and compare whole numbers up to 10,000 .
	Access Point MA.3.NSO.1.AP. 3 Plot, order and compare whole numbers up to 1,000 .
MA.3.NSO.1.4	Round whole numbers from 0 to 1,000 to the nearest 10 or 100.
	Access Point MA.3.NSO.1.AP. 4 Round whole numbers from 0 to 1,000 to the nearest 100 with visual support.

MA.3.NSO. 2 Add and subtract multi-digit whole numbers. Build an understanding of multiplication and division operations.

MA.3.NSO.2.1	Add and subtract multi-digit whole numbers including using a standard algorithm with procedural fluency.
	Access Point MA.3.NSO.2.AP.1 Apply a strategy to add and subtract two two- digit whole numbers.
MA.3.NSO.2.2	Explore multiplication of two whole numbers with products from 0 to 144, and related division facts.
	Access Point MA.3.NSO.2.AP.2 Explore the concept of multiplication of two single-digit whole numbers using objects.
MA.3.NSO.2.3	Multiply a one-digit whole number by a multiple of 10, up to 90, or a multiple of 100, up to 900, with procedural reliability.
	Access Point MA.3.NSO.2.AP.3 Explore multiplying a one-digit whole number by 10.

MA.3.NSO.2.4	Multiply two whole numbers from 0 to 12 and divide using related facts with procedural reliability.
	Access Point MA.3.NSO.2.AP.4 Explore the relationship between multiplication and division in order to multiply and divide. Multiplication may not exceed two single-digit whole numbers and their related division facts.

Fractions

MA.3.FR. 1 Understand fractions as numbers and represent fractions.

MA.3.FR.1.1	Represent and interpret unit fractions in the form $\frac{1}{n}$ as the quantity formed by one part when a whole is partitioned into n equal parts.

Access Point

MA.3.FR.1.AP. 1 Explore unit fractions in the form $\frac{\mathbf{1}}{\boldsymbol{n}}$ as the quantity formed by one part when a whole is partitioned into n equal parts. Denominators are limited to 2, 3 and 4.

MA.3.FR.1.2	Represent and interpret fractions, including fractions greater than one, in the form of $\frac{m}{n}$ itself m times.

Access Point

MA.3.FR.1.AP. 2 Explore fractions, less than or equal to a whole, in the form of $\frac{\boldsymbol{m}}{\boldsymbol{n}}$ as the result of adding the unit fraction $\frac{\mathbf{1}}{\boldsymbol{n}}$ to itself m times. Denominators are limited to 2,3 and 4.
MA.3.FR.1.3 \quad Read and write fractions, including fractions greater than one, using standard form, numeral-word form and word form.

Access Point

MA.3.FR.1.AP. 3 Read and generate fractions, less than or equal to a whole, using standard form.
MA.3.FR. 2 Order and compare fractions and identify equivalent fractions.

MA.3.FR.2.1	Plot, order and compare fractional numbers with the same numerator or the same denominator.
	Access Point MA.3.FR.2.AP.1 Compare fractional numbers with the same denominator. Denominators are limited to 2, 3 and 4.
MA.3.FR.2.2	Identify equivalent fractions and explain why they are equivalent.
	Access Point MA.3.FR.2.AP.2 Using a visual model, recognize fractions less than a whole that are equivalent to fractions with denominators of 2, 3 or 4 (e.g., $\frac{\mathbf{4}}{\mathbf{8}}$ is equivalent to $\frac{\mathbf{1}}{\mathbf{2}}$).

Algebraic Reasoning

MA.3.AR.1 Solve multiplication and division problems.	
MA.3.AR.1.1	Apply the distributive property to multiply a one-digit number and two-digit number. Apply properties of multiplication to find a product of one-digit whole numbers.
	Access Point MA.3.AR.1.AP.1 Apply the commutative property of multiplication to find a product of one-digit whole numbers.
MA.3.AR.1.2	Solve one- and two-step real-world problems involving any of four operations with whole numbers.
	Access Point MA.3.AR.1.AP.2a Solve one- and two-step addition and subtraction real-world problems within 100.
	MA.3.AR.1.AP.2b Solve one-step multiplication and division real- world problems. Multiplication may not exceed two single-digit whole numbers and their related division facts.
MA.3.AR.2 Develop an anderstanding of equality and multiplication and division.	
MA.3.AR.2.1	Restate a division problem as a missing factor problem using the relationship between multiplication and division.
	Access Point MA.3.AR.2.AP.1 Explore division as multiplication with a missing factor using the relationship between multiplication and division.
MA.3.AR.2.2	Determine and explain whether an equation involving multiplication or division is true or false.
	Access Point MA.3.AR.2.AP.2 Determine if multiplication or division equations with no more than three terms are true or false. Multiplication may not exceed two single-digit whole numbers and their related division facts.
MA.3.AR.2.3	Determine the unknown whole number in a multiplication or division equation, relating three whole numbers, with the unknown in any position.
MA.3.AR.3 Identify	
MA.3.AR.3.1	Access Point MA.3.AR.2.AP.3 Determine the unknown whole number in a multiplication or division equation, relating three whole numbers, with the product or quotient unknown (e.g., $2 \times 5=$ and their related division facts.
	Determine and explain whether a whole number from 1 to even or odd.
Access Point MA.3.AR.3.AP.1 Determine whether a whole number from 1 to 100 is even or odd.	

MA.3.AR.3.2	Determine whether a whole number from 1 to 144 is a multiple of a given one-digit number.
	Access Point MA.3.AR.3.AP. 2 Explore that a whole number is a multiple of each of its factors. Factors not to exceed single-digit whole numbers.
MA.3.AR.3.3	Identify, create and extend numerical patterns.
	Access Point MA.3.AR.3.AP. 3 Extend a numerical pattern when given a one-step addition rule (e.g., when given the pattern $5,10,15$, use the rule add 5 to extend the pattern).
Measurement	
MA.3.M.1 Measure attributes of objects and solve problems involving measurement.	
MA.3.M.1.1	Select and use appropriate tools to measure the length of an object, the volume of liquid within a beaker and temperature.
	Access Point MA.3.M.1.AP.1a Select and use appropriate tools to measure the length (i.e., inches, feet, yards) of an object.
	MA.3.M.1.AP.1b Explore selecting and using appropriate tools to measure liquid volume (i.e., gallons, quarts, pints, cups) and temperature in degrees Fahrenheit.
MA.3.M.1.2	Solve real-world problems involving any of the four operations with whole-number lengths, masses, weights, temperatures or liquid volumes.
	Access Point MA.3.M.1.AP.2a Solve one- and two-step addition and subtraction real-world problems within 100 with whole number lengths (i.e., inches, feet, yards), temperatures (i.e., degrees Fahrenheit) or liquid volumes (i.e., gallons, quarts, pints, cups).
	MA.3.M.1.AP.2b Solve one-step multiplication and division realworld problems with whole number lengths (i.e., inches, feet, yards), temperatures (i.e., degrees Fahrenheit) or liquid volumes (i.e., gallons, quarts, pints and cups). Multiplication may not exceed two single-digit whole numbers and their related division facts.
MA.3.M.2 Tell and write time and solve problems involving time.	
MA.3.M.2.1	Using analog and digital clocks, tell and write time to the nearest minute using a.m. and p.m. appropriately.
	Access Point MA.3.M.2.AP. 1 Using analog and digital clocks, express the time to the nearest five minutes using a.m. and p.m. appropriately.
MA.3.M.2.2	Solve one- and two-step real-world problems involving elapsed time.
	Access Point MA.3.M.2.AP. 2 Solve for end time in one-step real-world problems when given start time and elapsed time in whole hours or minutes within the hour.

Geometric Reasoning

$\begin{array}{l}\text { MA.3.GR.1 Describe and identify relationships between lines and classify } \\ \text { quadrilaterals. }\end{array}$	
MA.3.GR.1.1	$\begin{array}{l}\text { Describe and draw points, lines, line segments, rays, intersecting } \\ \text { lines, perpendicular lines and parallel lines. Identify these in two- } \\ \text { dimensional figures. }\end{array}$
	$\begin{array}{l}\text { Access Point } \\ \text { MA.3.GR.1.AP.1 Identify points, lines, line segments, } \\ \text { perpendicular lines and parallel lines. Identify these in two- } \\ \text { dimensional figures. }\end{array}$
MA.3.GR.1.2	$\begin{array}{l}\text { Identify and draw quadrilaterals based on their defining attributes. } \\ \text { Quadrilaterals include parallelograms, rhombi, rectangles, squares } \\ \text { and trapezoids. }\end{array}$
	$\begin{array}{l}\text { Access Point } \\ \text { MA.3.GR.1.AP.2 Identify quadrilaterals based on their defining } \\ \text { attributes. Quadrilaterals include parallelograms, rhombi, } \\ \text { rectangles, squares and trapezoids. }\end{array}$
MA.3.GR.1.3	$\begin{array}{l}\text { Draw line(s) of symmetry in a two-dimensional figure and identify } \\ \text { line-symmetric two-dimensional figures. }\end{array}$
	$\begin{array}{l}\text { Access Point } \\ \text { MA.3.GR.1.AP.3 Identify line-symmetric two-dimensional figures. }\end{array}$
MA.3.GR.2 Solve problems involving the perimeter and area of rectangles.	

the figure with unit squares without gaps or overlaps. Find areas of

rectangles by counting unit squares.\end{array}\right| $$
\begin{array}{|l|l|}\hline \text { MA.3.GR.2.1 } & \begin{array}{l}\text { Access Point } \\
\text { MA.3.GR.2.AP.1 Explore area as an attribute of a two-dimensional } \\
\text { figure that can be measured by covering the figure with unit squares } \\
\text { without gaps or overlaps. }\end{array} \\
\hline \text { MA.3.GR.2.3 } & \begin{array}{l}\text { Find the area of a rectangle with whole-number side lengths using a } \\
\text { visual model and a multiplication formula. }\end{array} \\
\hline \begin{array}{l}\text { Access Point } \\
\text { MA.3.GR.2.AP.2 Find the area of a rectangle with whole-number } \\
\text { side lengths by counting unit squares. Explore that the area is the } \\
\text { same as what would be found by multiplying the side lengths. }\end{array} \\
\hline \text { MA.3.GR.2.2 } \\
\text { Solve mathematical and real-world problems involving the } \\
\text { perimeter and area of rectangles with whole-number side lengths } \\
\text { using a visual model and a formula. }\end{array}
$$\right\}\)

$\left.$| MA.3.GR.2.4 Solve mathematical and real-world problems involving the
 perimeter and area of composite figures composed of non-
 overlapping rectangles with whole-number side lengths.
 Access Point
 MA.3.GR.2.AP.4 Explore the perimeter and area of composite
 figures composed of two non-overlapping rectangles with whole-
 number side lengths.
 Data Analysis and Probability |
| :--- |
| MA.3.DP.1 Collect, represent and interpret numerical and categorical data. |
| MA.3.DP.1.1 |
| Collect and represent numerical and categorical data with whole-
 number values using tables, scaled pictographs, scaled bar graphs or
 line plots. Use appropriate titles, labels and units. | | Access Point |
| :--- |
| MA.3.DP.1.AP.1a Sort and represent categorical data (up to four |
| categories) with whole-number values using tables, pictographs or bar |
| graphs. Select appropriate title, labels and units. | \right\rvert\,

Grade 4 B.E.S.T. Standards Access Points

Number Sense and Operations

MA.4.NSO.1 Understand place value for multi-digit numbers.

MA.4.NSO.1.1	Express how the value of a digit in a multi-digit whole number changes if the digit moves one place to the left or right.
Access Point MA.4.NSO.1.AP.1 Explore how the value of a digit in a multi-digit whole number changes if the digit moves one place to the left.	
MA.4.NSO.1.2	Read and write multi-digit whole numbers from 0 to 1,000,000 using standard form, expanded form and word form.
Access Point MA.4.NSO.1.AP.2 Read and generate numbers from 0 to 10,000 using standard form and expanded form.	
MA.4.NSO.1.3	Plot, order and compare multi-digit whole numbers up to 1,000,000.
Access Point MA.4.NSO.1.AP.3 Plot, order and compare multi-digit whole Mumbers up to 10,000.	
MA.4.NSO.1.4	Round whole numbers from 0 to 10,000 to the nearest 10,100 or 1,000.
Access Point MA.4.NSO.1.AP.4 Round whole numbers from 100 to 10,000 to the nearest 1,000 with visual support.	
Plot, order and compare decimals up to the hundredths.	
	Access Point MA.4.NSO.1.AP.5 Using visual models, compare decimals less than one up to the hundredths.

MA.4.NSO. 2 Build an understanding of operations with multi-digit numbers including decimals.

MA.4.NSO.2.1	Recall multiplication facts with factors up to 12 and related division facts with automaticity.
	Access Point MA.4.NSO.2.AP.1 Recall multiplication facts of one-digit whole numbers multiplied by 1, 2, 5 and 10.
MA.4.NSO.2.2	Multiply two whole numbers, up to three digits by up to two digits, with procedural reliability.
	Access Point MA.4.NSO.2.AP.2 Explore multiplication of two whole numbers, up to two digits by one digit.
MA.4.NSO.2.3	Multiply two whole numbers, each up to two digits, including using a standard algorithm with procedural fluency.
	Access Point MA.4.NSO.2.AP.3 Apply a strategy to multiply two whole numbers up to two digits by one digit.

MA.4.NSO.2.4	Divide a whole number up to four digits by a one-digit whole number with procedural reliability. Represent remainders as fractional parts of the divisor.
	Access Point MA.4.NSO.2.AP.4 Explore division of two whole numbers up to two digits by one digit with and without remainders. Represent remainders as whole numbers.
MA.4.NSO.2.5	Explore the multiplication and division of multi-digit whole numbers using estimation, rounding and place value.
	Access Point MA.4.NSO.2.AP.5 Explore the estimation of products and quotients of two whole numbers up to two digits by one digit.
MA.4.NSO.2.6	Identify the number that is one-tenth more, one-tenth less, one- hundredth more and one-hundredth less than a given number.
	Access Point MA.4.NSO.2.AP.6 Identify the number that is one-tenth more and one-tenth less than a given number (i.e., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9).
MA.4.NSO.2.7	Explore the addition and subtraction of multi-digit numbers with decimals to the hundredths.
	Access Point MA.4.NSO.2.AP.7 Explore the addition and subtraction of decimals less than one to the tenths (e.g., $0.3+0.5) ~ a n d ~ h u n d r e d t h s ~(e . g ., ~$
$0.25-0.12)$.	

Fractions

MA.4.FR. 1 Develop an understanding of the relationship between different fractions and the relationship between fractions and decimals.	
MA.4.FR.1.1	Model and express a fraction, including mixed numbers and fractions greater than one, with the denominator 10 as an equivalent fraction with the denominator 100.
	Access Point MA.4.FR.1.AP.1 Using a visual model, recognize fractions less than one, with the denominator 10 as an equivalent fraction with the denominator 100 (e.g., $\frac{\mathbf{2}}{\mathbf{1 0}}$ is equivalent to $\left.\frac{\mathbf{2 0}}{\mathbf{1 0 0}}\right)$.
MA.4.FR.1.2	Use decimal notation to represent fractions with denominators of 10 or 100, including mixed numbers and fractions greater than 1, and use fractional notation with denominators of 10 or 100 to represent decimals.
Access Point MA.4.FR.1.AP. 2 Use decimal notation to represent fractions less than one with denominators of 10 or 100 and use fractional notation with denominators of 10 or 100 to represent decimals less than one.	

MA.4.FR.1.3	Identify and generate equivalent fractions, including fractions greater than one. Describe how the numerator and denominator are affected when the equivalent fraction is created.
	Access Point MA.4.FR.1.AP. 3 Using a visual model, generate fractions less than a whole that are equivalent to fractions with denominators $2,3,4,6$, 8 or 10 . Explore how the numerator and denominator are affected when the equivalent fraction is created.
MA.4.FR.1.4	Plot, order and compare fractions, including mixed numbers and fractions greater than one, with different numerators and different denominators.
	Access Point MA.4.FR.1.AP.4a Explore mixed numbers and fractions greater than one.
	MA.4.FR.1.AP.4b Using visual models, compare fractions less than one with different numerators and different denominators. Denominators limited to $2,3,4,6,8$ or 10 .
MA.4.FR. 2 Build a foundation of addition, subtraction and multiplication operations with fractions.	
MA.4.FR.2.1	Decompose a fraction, including mixed numbers and fractions greater than one, into a sum of fractions with the same denominator in multiple ways. Demonstrate each decomposition with objects, drawings and equations.
	Access Point MA.4.FR.2.AP. 1 Decompose a fraction less than one into a sum of unit fractions with the same denominator (e.g., $\frac{3}{4}=\frac{1}{4}+\frac{1}{4}+\frac{1}{4}$). Denominators limited to $2,3,4,6,8$ or 10 . Demonstrate each decomposition with objects, drawings or equations.
MA.4.FR.2.2	Add and subtract fractions with like denominators, including mixed numbers and fractions greater than one, with procedural reliability.
	Access Point MA.4.FR.2.AP. 2 Explore adding and subtracting fractions less than one with like denominators. Denominators limited to $2,3,4,6,8$ or 10.
MA.4.FR.2.3	Explore the addition of a fraction with denominator of 10 to a fraction with denominator of 100 using equivalent fractions.
	Access Point MA.4.FR.2.AP. 3 Explore the addition of a fraction with denominator of 10 to a fraction with denominator of 100 using visual models to find equivalent fractions.

MA.4.FR.2.4	Extend previous understanding of multiplication to explore the multiplication of a fraction by a whole number or a whole number by a fraction.
	Access Point MA.4.FR.2.AP. 4 Explore the multiplication of a unit fraction by a whole number (e.g., $3 \times \frac{1}{4}, 2 \times \frac{1}{6}, 5 \times \frac{1}{2}$). Denominators limited to 2 , $3,4,6,8$ or 10 .
Algebraic Reasoning MA.4.AR. 1 Represent and solve problems involving the four operations with whole numbers and fractions.	
MA.4.AR.1.1	Solve real-world problems involving multiplication and division of whole numbers including problems in which remainders must be interpreted within the context.
	Access Point MA.4.AR.1.AP. 1 Solve one-step real-world problems involving multiplication and division of whole numbers. Multiplication may not exceed two-digit by one-digit and division must be related to one-digit by one-digit multiplication facts.
MA.4.AR.1.2	Solve real-world problems involving addition and subtraction of fractions with like denominators, including mixed numbers and fractions greater than one.
	Access Point MA.4.AR.1.AP. 2 Solve one-step real-world problems involving addition and subtraction of fractions less than one with like denominators. Denominators limited to $2,3,4,6,8$ or 10 .
MA.4.AR.1.3	Solve real-world problems involving multiplication of a fraction by a whole number or a whole number by a fraction.
	Access Point MA.4.AR.1.AP. 3 Solve one-step real-world problems involving multiplication of a unit fraction by a whole number (e.g., $3 \times \frac{1}{4}, 2 \times$ $\frac{\mathbf{1}}{\mathbf{6}}, 5 \times \frac{\mathbf{1}}{\mathbf{2}}$). Denominators limited to $2,3,4,6,8$ or 10 .
MA.4.AR. 2 Demonstrate an understanding of equality and operations with whole numbers.	
MA.4.AR.2.1	Determine and explain whether an equation involving any of the four operations with whole numbers is true or false.
	Access Point MA.4.AR.2.AP. 1 Determine whether an equation (with no more than three terms) involving any of the four operations with whole numbers is true or false. Sums may not exceed 100 and their related subtraction facts. Multiplication may not exceed two-digit by onedigit and division must be related to one-digit by one-digit multiplication facts

$\left.$| MA.4.AR.2.2 | Given a mathematical or real-world context, write an equation
 involving multiplication or division to determine the unknown
 whole number with the unknown in any position. |
| :--- | :--- |
| | Access Point
 MA.4.AR.2.AP.2 Given a real-world context, identify or generate
 an equation involving multiplication or division to determine the
 unknown product or quotient. Multiplication may not exceed two-
 digit by one-digit and division must be related to one-digit by one-
 digit multiplication facts |
| MA.4.AR.3 Recognize numerical patterns, including patterns that follow a given rule. | |\(\left|\begin{array}{l}Determine factor pairs for a whole number from 0 to 144.

Determine whether a whole number from 0 to 144 is prime,

composite or neither.\end{array}\right|\)| MA.4.AR.3.1 | Access Point
 MA.4.AR.3.AP.1 Explore factor pairs for a whole number. Factors
 may not exceed single-digit whole numbers. |
| :--- | :--- |
| MA.4.AR.3.2 | Generate, describe and extend a numerical pattern that follows a
 given rule. |
| | Access Point
 MA.4.AR.3.AP.2 Generate a numerical pattern when given a
 starting term and a one-step addition rule (e.g., starting at the
 number 5 use the rule add 5 and generate the pattern). |
| MA.4.M.1 Measure the length of objects and solve problems involving measurement. | | \right\rvert\, | Select and use appropriate tools to measure attributes of objects. | |
| :--- | :--- |
| MA.4.M.1.1 | Access Point
 MA.4.M.1.AP.1a Select and use appropriate tools to measure length
 (i.e., inches, feet, yards), liquid volume (i.e., gallons, quarts, pints,
 cups) and temperature (i.e., degrees Fahrenheit). |
| MA.4.M.1.AP.1b Explore selecting and using appropriate tools to | |
| measure weight (i.e., ounces, pounds). | |

MA.4.M.2 Solve problems involving time and money.

MA.4.M.2.1	Solve two-step real-world problems involving distances and intervals of time using any combination of the four operations.

Access Point

MA.4.M.2.AP.1a Solve one- and two-step real-world problems involving distances (i.e., inches, feet, yards, miles) in whole numbers using any combination of the four operations.
MA.4.M.2.AP.1b Solve one-step real-world problems involving intervals of time in whole numbers using any of the four operations.
MA.4.M.2.2 \quad Solve one- and two-step addition and subtraction real-world problems involving money using decimal notation.
Access Point
MA.4.M.2.AP. 2 Solve one- and two-step addition and subtraction real-world problems involving money using decimal notation. Sums not to exceed $\$ 0.99$ and their related subtraction facts.

Geometric Reasoning

MA.4.GR. 1 Draw, classify and measure angles.

MA.4.GR.1.1	Informally explore angles as an attribute of two-dimensional figures. Identify and classify angles as acute, right, obtuse, straight or reflex.
	Access Point MA.4.GR.1.AP.1 Informally explore angles as an attribute of two- dimensional figures. Limit angles to acute, obtuse and right.
MA.4.GR.1.2	Estimate angle measures. Using a protractor, measure angles in whole-number degrees and draw angles of specified measure in whole-number degrees. Demonstrate that angle measure is additive.
	Access Point MA.4.GR.1.AP.2 Using a tool with a square angle, identify angles as acute, right or obtuse and construct angles that are acute, right or obtuse.
MA.4.GR.1.3	Solve real-world and mathematical problems involving unknown whole-number angle measures. Write an equation to represent the unknown.
Access Point MA.4.GR.1.AP.3 Recognize that angle measure is additive by exploring when an angle is decomposed into two non-overlapping parts the angle measure of the whole is the sum of the angle measures of the parts.	

MA.4.GR. 2 Solve problems involving the perimeter and area of rectangles.

MA.4.GR.2.1	Solve perimeter and area mathematical and real-world problems, including problems with unknown sides, for rectangles with whole- number side lengths.
	Access Point MA.4.GR.2.AP.1 Solve perimeter and area mathematical and real- world problems for rectangles with given whole-number side lengths.
MA.4.GR.2.2	Solve problems involving rectangles with the same perimeter and different areas or with the same area and different perimeters.
	Access Point MA.4.GR.2.AP.2 Explore the relationship between perimeter and area using rectangles with the same perimeter and different areas or with the same area and different perimeters.

Data Analysis and Probability

MA.4.DP. 1 Collect, of \boldsymbol{a} data set.	Collect and represent and interpret data and find the mode, median and range using tables, stem-and-leaf plots or line plots.
MA.4.DP.1.1	Access Point MA.4.DP.1.AP.1 Sort and represent numerical data, including fractional values using tables or line plots (when given a scaled number line). Data set to include only whole numbers and halves.
MA.4.DP.1.2	Determine the mode, median or range to interpret numerical data including fractional values, represented with tables, stem-and-leaf plots or line plots.
	Access Point MA.4.DP.1.AP.2 Determine the mode or range to interpret numerical data including fractional values, represented with tables or line plots. Data set to include only whole numbers and halves. Limit the greatest and least number in a data set to a whole number.
MA.4.DP.1.3	Solve real-world problems involving numerical data.
	Access Point MA.4.DP.1.AP.3 Solve one-step real-world problems involving numerical data represented with tables or line plots. Data set to include only whole numbers and halves. Required operations to involve only the whole number data points in the data set.

Grade 5 B.E.S.T. Standards Access Points

Number Sense and Operations

MA.5.NSO.1 Understand the place value of multi-digit numbers with decimals to the thousandths place.	
MA.5.NSO.1.1	Express how the value of a digit in a multi-digit number with decimals to the thousandths changes if the digit moves one or more places to the left or right.
	Access Point MA.5.NSO.1.AP.1 Explore how the value of a digit in a multi-digit number with decimals to the hundredths changes if the digit moves one place to the left. Multi-digit numbers not to exceed 9.99.
MA.5.NSO.1.2	Read and write multi-digit numbers with decimals to the thousandths using standard form, word form and expanded form.
Access Point MA.5.NSO.1.AP.2 Read and generate multi-digit numbers with decimals to the hundredths using standard form and expanded form. Multi-digit numbers not to exceed 9.99.	
MA.5.NSO.1.3	Compose and decompose multi-digit numbers with decimals to the thousandths in multiple ways using the values of the digits in each place. Demonstrate the compositions or decompositions using objects, drawings and expressions or equations.
	Access Point MA.5.NSO.1.AP.3 Compose and decompose multi-digit numbers with decimals to the hundredths. Demonstrate each composition or decomposition with objects, drawings, expressions or equations. Multi-digit numbers not to exceed 9.99.
MA.5.NSO.1.4	Plot, order and compare multi-digit numbers with decimals up to the thousandths.
Access Point MA.5.NSO.1.AP.4 Plot, order and compare multi-digit numbers with decimals up to the hundredths. Multi-digit numbers not to exceed 9.99.	
MA.5.NSO.1.5	Round multi-digit numbers with decimals to the thousandths to the nearest hundredth, tenth or whole number.
MA.5.NSO.2.1	Access Point MA.5.NSO.1.AP.5 Round multi-digit numbers with decimals to the tenths to the nearest whole number (e.g., 1.7 rounds to 2); and numbers with decimals to the hundredths to the nearest tenth (e.g., 2.36 rounds to 2.4). Multi-digit numbers not to exceed 9.99.
Multiply multi-digit whole numbers including using a standard algorithm with procedural fluency.	
Acess Point MA.5.NSO.2.AP.1 Explore multiplication of two whole numbers, up to two digits by two digits.	

MA.5.NSO.2.2	Divide multi-digit whole numbers, up to five digits by two digits, including using a standard algorithm with procedural fluency. Represent remainders as fractions.
	Access Point MA.5.NSO.2.AP.2 Apply a strategy to divide two whole numbers up to two digits by one digit, including the possibility of whole number remainders.
MA.5.NSO.2.3	Add and subtract multi-digit numbers with decimals to the thousandths, including using a standard algorithm with procedural fluency.
	Access Point MA.5.NSO.2.AP.3 Apply a strategy to add and subtract multi-digit numbers with decimals to the tenths (e.g., 3.3 + 0.5) and hundredths (e.g., 1.25 - 0.12). Multi-digit numbers not to exceed 9.99.
MA.5.NSO.2.4	Explore the multiplication and division of multi-digit numbers with decimals to the hundredths using estimation, rounding and place value.
	Access Point MA.5.NSO.2.AP.4 Explore the estimation of products and quotients of two multi-digit numbers with decimals to the tenths (e.g., 8.9 \times 2.3 becomes 9 $\times 2$ by rounding both factors to the nearest whole number). Multi-digit numbers not to exceed 9.9.
MA.5.NSO.2.5	Multiply and divide a multi-digit number with decimals to the tenths by one- tenth and one-hundredth with procedural reliability.
Access Point MA.5.NSO.2.AP.5 Explore multiplying and dividing single-digit whole numbers by one-tenth and one-hundredth.	
MA.5.FR.1 Interpret a fraction as an answer to a division problem.	
MA.5.FR.1.1	Given a mathematical or real-world problem, represent the division of two whole numbers as a fraction.
Access Point MA.5.FR.1.AP.1 Explore the connection between fractions and division in a real-world problem.	

MA.5.FR. 2 Perform operations with fractions.

MA.5.FR.2.1	Add and subtract fractions with unlike denominators, including mixed numbers and fractions greater than 1, with procedural reliability.
	An

Access Point

MA.5.FR.2.AP.1a Explore adding and subtracting mixed numbers and fractions greater than 1 with like denominators.
MA.5.FR.2.AP.1b Explore adding and subtracting fractions less than one with unlike denominators where one denominator is a multiple of the other (e.g., $\frac{1}{2}+\frac{3}{4}, \frac{2}{3}-\frac{1}{6}$).

MA.5.FR.2.2	Extend previous understanding of multiplication to multiply a fraction by a fraction, including mixed numbers and fractions greater than 1, with procedural reliability.
	Access Point MA.5.FR.2.AP.2 Explore multiplying a unit fraction by a unit fraction.
MA.5.FR.2.3	When multiplying a given number by a fraction less than 1 or a fraction greater than 1, predict and explain the relative size of the product to the given number without calculating.

Access Point

MA.5.FR.2.AP. 3 Explore the impact on the size of the product when multiplying a given number by a fraction less than 1 or by a whole number.

| MA.5.FR.2.4 | Extend previous understanding of division to explore the division of |
| :--- | :--- | a unit fraction by a whole number and a whole number by a unit fraction.

Access Point
MA.5.FR.2.AP. 4 Explore the division of a one-digit whole number by a unit fraction. Denominators are limited to 2,3 or 4 .

MA.5.AR.1 Solve problems involving the four operations with whole numbers and fractions.	Solve multi-step real-world problems involving any combination of the four operations with whole numbers, including problems in which remainders must be interpreted within the context.
MA.5.AR.1.1	Access Point MA.5.AR.1.AP.1 Solve one- and two-step real-world problems involving any combination of the four operations with whole numbers. Explore problems in which remainders must be interpreted within the context.

MA.5.AR.1.2	Solve real-world problems involving the addition, subtraction or multiplication of fractions, including mixed numbers and fractions greater than 1.
	Access Point MA.5.AR.1.AP.2a Solve one-step real-world problems involving addition and subtraction of mixed numbers and fractions greater than one with like denominators.
	MA.5.AR.1.AP.2b Solve one-step real-world problems involving multiplication of unit fractions.
MA.5.AR.1.3	Solve real-world problems involving division of a unit fraction by a whole number and a whole number by unit fraction.
	Access Point MA.5.AR.1.AP.3 Solve one-step real-world problems involving division of a whole number by a unit fraction.
MA.5.AR.2 Demonstrate an understanding of equality, the order of operations and equivalent numerical expressions.	
MA.5.AR.2.1	Translate written real-world and mathematical descriptions into numerical expressions and numerical expressions into written mathematical descriptions.
	Access Point MA.5.AR.2.AP.1 Translate mathematical descriptions (e.g., five plus two; the product of three and four) into numerical expressions with two terms.
MA.5.AR.2.2	Evaluate multi-step numerical expressions using order of operations.
Access Point MA.5.AR.2.AP.2 Evaluate an expression containing three terms and one set of parentheses.	
MA.5.AR.2.3	Determine and explain whether an equation involving any of the four operations is true or false.
Access Point MA.5.AR.2.AP.3 Determine whether an equation (with no more than four terms and up to one set of parentheses) involving any of the four operations with whole numbers is true or false. Limit addition and subtraction to within 100 and limit multiplication and division to the products of two single-digit whole numbers and their related division facts.	
	Given a mathematical or real-world context, write an equation involving any of the four operations to determine the unknown whole number with the unknown in any position.
Access Point MA.5.AR.2.AP.4 Given a mathematical or real-world context, generate an equation involving any of the four operations to determine the unknown sum, difference, product or quotient. Sums may not exceed 100 and their related subtraction facts. Multiplication and division may not exceed two digit by one digit.	

MA.5.AR.3 Analyze patterns and relationships between inputs and outputs.	
MA.5.AR.3.1	Given a numerical pattern, identify and write a rule that can describe the pattern as an expression.
	Access Point MA.5.AR.3.AP.1 Given a numerical pattern, identify a one-step rule that can describe the pattern.
MA.5.AR.3.2	Given a rule for a numerical pattern, use a two-column table to record the inputs and outputs.
	Access Point MA.5.AR.3.AP.2 Given the inputs and a one-step addition or subtraction rule for a numerical pattern, use a two-column table to record the outputs.
MA.5.M.1 Convert measurement units to solve multi-step problems.	
MA.5.M.1.1	Solve multi-step real-world problems that involve converting measurement units to equivalent measurements within a single system of measurement.
	Access Point MA.5.M.1.AP.1a Using a conversion sheet, convert within a single system of measurement using the units: miles, yards, feet, inches; pounds, ounces; gallons, quarts, pints, cups; and hours, minutes. Only whole number measurements may be used.
MA.5.M.1.AP.1b Using a conversion sheet, solve one-and two-step real-world problems that involve converting measurement units (i.e., miles, yards, feet, inches; pounds, ounces; gallons, quarts, pints, cups; and hours, minutes) to equivalent measurements within a single system of measurement. Only whole number measurements may be used.	
MA.5.M.2 Solve problems involving money.	
MA.5.M.2.1	Solve multi-step real-world problems involving money using decimal notation.
Access Point MA.5.M.2.AP.1 Solve one- and two-step addition and subtraction real-world problems involving money using decimal notation with all terms less than \$20.00 (e.g., \$11.74 + \$5.31, \$10.99 - \$3.26).	

Geometric Reasoning

MA.5.GR. 1 Classify two-dimensional figures and three-dimensional figures based on defining attributes.	
MA.5.GR.1.1	Classify triangles or quadrilaterals into different categories based on shared defining attributes. Explain why a triangle or quadrilateral would or would not belong to a category.
	Access Point MA.5.GR.1.AP.1a Sort triangles into different categories based on the size of their angles. Triangles include acute, obtuse and right.
	MA.5.GR.1.AP.1b Sort quadrilaterals into different categories based on shared defining attributes. Explore why a quadrilateral would or would not belong to a category. Quadrilaterals include parallelograms, rhombi, rectangles, squares and trapezoids.
MA.5.GR.1.2	Identify and classify three-dimensional figures into categories based on their defining attributes. Figures are limited to right pyramids, right prisms, right circular cylinders, right circular cones and spheres.
	Access Point MA.5.GR.1.AP. 2 Identify and sort three-dimensional figures into categories based on their defining attributes. Figures are limited to right rectangular pyramids, right rectangular prisms, right circular cylinders, right circular cones and spheres.
MA.5.GR. 2 Find the perimeter and area of rectangles with fractional or decimal side lengths.	
MA.5.GR.2.1	Find the perimeter and area of a rectangle with fractional or decimal side lengths using visual models and formulas.
	Access Point MA.5.GR.2.AP. 1 Find the perimeter and area of a rectangle with decimal side lengths using a visual model and calculator.

MA.5.GR.3 Solve problems involving the volume of right rectangular prisms.	
MA.5.GR.3.1	Explore volume as an attribute of three-dimensional figures by packing them with unit cubes without gaps. Find the volume of a right rectangular prism with whole-number side lengths by counting unit cubes.
	Access Point MA.5.GR.3.AP.1 Explore volume as an attribute of three- dimensional figures that can be measured by packing them with unit cubes without gaps.

MA.5.GR.3.2	Find the volume of a right rectangular prism with whole-number side lengths using a visual model and a formula.
Access Point MA.5.GR.3.AP.2 Find the volume of a right rectangular prism with whole-number side lengths by counting unit cubes. Explore that the volume is the same as what would be found by multiplying the edge lengths.	
MA.5.GR.3.3	Solve real-world problems involving the volume of right rectangular prisms, including problems with an unknown edge length, with whole-number edge lengths using a visual model or a formula. Write an equation with a variable for the unknown to represent the problem.
	Access Point MA.5.GR.3.AP.3 Solve real-world problems involving the volume of right rectangular prisms with given whole-number edge lengths using a visual model or formula.
MA.5.GR.4 Plot points and represent problems on the coordinate plane.	
MA.5.GR.4.1	Identify the origin and axes in the coordinate system. Plot and label ordered pairs in the first quadrant of the coordinate plane.
	Access Point MA.5.GR.4.AP.1 Explore the first quadrant of the coordinate plane including the origin, axes and points located by using ordered pairs.
MA.5.GR.4.2	Represent mathematical and real-world problems by plotting points in the first quadrant of the coordinate plane and interpret coordinate values of points in the context of the situation.
Access Point MA.5.GR.4.AP.2 Plot and label ordered pairs in the first quadrant of the coordinate plane.	

Data Analysis and Probability

MA.5.DP.1 Collect, represent and interpret data and find the mean, mode, median or range of a data set.	
MA.5.DP.1.1	Collect and represent numerical data, including fractional and decimal values, using tables, line graphs or line plots.
	Access Point MA.5.DP.1.AP.1 Sort and represent numerical data, including fractional values using tables or line plots (when given a scaled number line). Data set to include only whole numbers, halves and quarters.
MA.5.DP.1.2	Interpret numerical data, with whole-number values, represented with tables or line plots by determining the mean, mode, median or range.
Access Point MA.5.DP.1.AP.2 Interpret numerical data, with whole-number values, represented with tables or line plots by determining the mean, mode or range. Line plot scales to include only whole numbers, halves and quarters.	

Grade 6

Number Sense and Operations

MA.6.NSO. 1 Extend knowledge of numbers to negative numbers and develop an understanding of absolute value.	
MA.6.NSO.1.1	Extend previous understanding of numbers to define rational numbers. Plot, order and compare rational numbers.
	Access Point MA.6.NSO.1.AP. 1 Plot, order and compare rational numbers (positive and negative integers within 10 from 0 , fractions with common denominators, decimals up to the hundredths and percentages) in the same form.
MA.6.NSO.1.2	Given a mathematical or real-world context, represent quantities that have opposite direction using rational numbers. Compare them on a number line and explain the meaning of zero within its context.
	Access Point MA.6.NSO.1.AP. 2 Represent positive and negative numbers in the same form on a number line given a real-world situation and explain the meaning of zero within its context.
MA.6.NSO.1.3	Given a mathematical or real-world context, interpret the absolute value of a number as the distance from zero on a number line. Find the absolute value of rational numbers.
	Access Point MA.6.NSO.1.AP. 3 Find absolute value of a rational number ranging from -30 to 30 using a number line.
MA.6.NSO.1.4	Solve mathematical and real-world problems involving absolute value, including the comparison of absolute value.
	Access Point MA.6.NSO.1.AP. 4 Use manipulatives, models or tools to compare absolute value in mathematical and real-world problems.
MA.6.NSO.2 Add, subtract, multiply and divide positive rational numbers.	
MA.6.NSO.2.1	Multiply and divide positive multi-digit numbers with decimals to the thousandths, including using a standard algorithm with procedural fluency.
	Access Point MA.6.NSO.2.AP. 1 Solve one-step multiplication and division problems involving positive decimals whose place value ranges from the tens to the hundredths places.
MA.6.NSO.2.2	Extend previous understanding of multiplication and division to compute products and quotients of positive fractions by positive fractions, including mixed numbers, with procedural fluency.
	Access Point MA.6.NSO.2.AP. 2 Use tools to calculate the product and quotient of positive fractions by positive fractions, including mixed numbers, using the standard algorithms.

MA.6.NSO.2.3	Solve multi-step real-world problems involving any of the four operations with positive multi-digit decimals or positive fractions, including mixed numbers.
	Access Point MA.6.NSO.2.AP.3a Solve one-step real-world problems involving any of the four operations with positive decimals ranging from the hundreds to hundredth place value.
	MA.6.NSO.2.AP.3b Solve one-step real-world problems involving any of the four operations with positive fractions and mixed numbers with like denominators.
MA.6.NSO.3 Apply properties of operations to rewrite numbers in equivalent forms.	
MA.6.NSO.3.1	Given a mathematical or real-world context, find the greatest common factor and least common multiple of two whole numbers.
	Access Point MA.6.NSO.3.AP. 1 Use tools to find the greatest common factor and least common multiple of two whole numbers 50 or less.
MA.6.NSO.3.2	Rewrite the sum of two composite whole numbers having a common factor, as a common factor multiplied by the sum of two whole numbers.
	Access Point MA.6.NSO.3.AP. 2 Use the distributive property to express a number as the sum of two whole numbers multiplied by a common factor.
MA.6.NSO.3.3	Evaluate positive rational numbers and integers with natural number exponents.
	Access Point MA.6.NSO.3.AP.3a Identify what an exponent represents (e.g., $8^{3}=$ $8 \times 8 \times 8)$
	MA.6.NSO.3.AP.3b Solve numerical expressions involving wholenumber bases and exponents $\text { (e.g., } 5+2^{4} \times 6=101 \text {). }$
MA.6.NSO.3.4	Express composite whole numbers as a product of prime factors with natural number exponents.
	Access Point MA.6.NSO.3.AP. 4 Use a tool to show the prime factors of a composite whole number (e.g., $20=2 \times 2 \times 5$).
MA.6.NSO.3.5	Rewrite positive rational numbers in different but equivalent forms including fractions, terminating decimals and percentages.
	Access Point MA.6.NSO.3.AP. 5 Rewrite a positive rational number 3 or less, as a fraction, decimal or a percent.

MA.6.NSO.4 Extend understanding of operations with integers.	
MA.6.NSO.4.1	Apply and extend previous understandings of operations with whole numbers to add and subtract integers with procedural fluency.
	Access Point MA.6.NSO.4.AP. 1 Use tools to add and subtract integers between 50 and -50.
MA.6.NSO.4.2	Apply and extend previous understandings of operations with whole numbers to multiply and divide integers with procedural fluency.
	Access Point MA.6.NSO.4.AP. 2 Use tools to multiply and divide integers between 20 and -20 .
MA.6.AR. 1 Apply previous understanding of arithmetic expressions to algebraic expressions.	
MA.6.AR.1.1	Given a mathematical or real-world context, translate written descriptions into algebraic expressions and translate algebraic expressions into written descriptions.
	Access Point MA.6.AR.1.AP. 1 Write or select an algebraic expression that represents a real-world situation.
MA.6.AR.1.2	Translate a real-world written description into an algebraic inequality in the form of $x x>00, x x<0 o$, $x x \geq o o$ or $x x \leq o o$. Represent the inequality on a number line.
	Access Point MA.6.AR.1.AP. 2 Write or select an inequality that represents a real-world situation.
MA.6.AR.1.3	Evaluate algebraic expressions using substitution and order of operations.
	Access Point MA.6.AR.1.AP. 3 Solve an expression using substitution with no more than two operations.
MA.6AR.1.4	Apply the properties of operations to generate equivalent algebraic expressions with integer coefficients.
	Access Point MA.6.AR.1.AP. 4 Use tools or models to combine like terms in an expression with no more than four operations.
MA.6.AR. 2 Develop an understanding for solving equations and inequalities. Write and solve one-step equations in one variable.	
MA.6.AR.2.1	Given an equation or inequality and a specified set of integer values, determine which values make the equation or inequality true or false.
	Access Point MA.6.AR.2.AP. 1 Choose which values, from a set of five or fewer integers, make an equation or inequality true.

MA.6.AR.2.2	Write and solve one-step equations in one variable within a mathematical or real-world context using addition and subtraction, where all terms and solutions are integers.
	Access Point MA.6.AR.2.AP. 2 Solve real-world, one-step linear equations using addition and subtraction involving integers.
MA.6.AR.2.3	Write and solve one-step equations in one variable within a mathematical or real-world context using multiplication and division, where all terms and solutions are integers.
	Access Point MA.6.AR.2.AP. 3 Solve real-world, one-step linear equations using multiplication and division involving integers.
MA.6.AR.2.4	Determine the unknown decimal or fraction in an equation involving any of the four operations, relating three numbers, with the unknown in any position.
	Access Point MA.6.AR.2.AP. 4 Solve a one-step equation using fractions with like denominators or decimals with place value ranging from the thousand to the thousandths.
MA.6.AR. 3 Understand ratio and unit rate concepts and use them to solve problems.	
MA.6.AR.3.1	Given a real-world context, write and interpret ratios to show the relative sizes of two quantities using appropriate notation: $a a, o o$ to $b b$, or $o o: b b$ where $b b \neq 0$
	Access Point MA.6.AR.3.AP. 1 Given a real-world context, write and interpret ratios to show the relative sizes of two quantities using notation: a / b, a to b, or $a: b$ where $b \neq 0$ with guidance and support.
MA.6.AR.3.2	Given a real-world context, determine a rate for a ratio of quantities with different units. Calculate and interpret the corresponding unit rate
	Access Point MA.6.AR.3.AP. 2 Given a rate, calculate the unit rate for a ratio with different units.
MA.6.AR.3.3	Extend previous understanding of fractions and numerical patterns to generate or complete a two- or three-column table to display equivalent part-to-part ratios and part-to-part-to-whole ratios.
	Access Point MA.6.AR.3.AP. 3 Given a visual representation, write or select a ratio that describes the ratio relationship between part-to-part and part-to-whole ratios.
MA.6.AR.3.4	Apply ratio relationships to solve mathematical and real-world problems involving percentages using the relationship between two quantities.
	Access Point MA.6.AR.3.AP. 4 Calculate a percentage of quantity as rate per 100 using models (e.g., percent bars or 10×10 grids).

MA.6.AR.3.5	Solve mathematical and real-world problems involving ratios, rates and unit rates, including comparisons, mixtures, ratios of lengths and conversions within the same measurement system.
	Access Point MA.6.AR.3.AP.5a Use tools, models or manipulatives to solve problems involving ratio relationships including mixtures and ratios of length.
	MA.6.AR.3.AP.5b Use tools, models or manipulatives to solve ratio, rate or unit rate problems involving conversions within the same measurement system.
Geometric Reasoning	
MA.6.GR. 1 Apply previous understanding of the coordinate plane to solve problems.	
MA.6.GR.1.1	Extend previous understanding of the coordinate plane to plot rational number ordered pairs in all four quadrants and on both axes. Identify the x - or y-axis as the line of reflection when two ordered pairs have an opposite x - or y-coordinate.
	Access Point MA.6.GR.1.AP. 1 Plot integer ordered pairs in all four quadrants and on both axes.
MA.6.GR.1.2	Find distances between ordered pairs, limited to the same x-coordinate or the same y-coordinate, represented on the coordinate plane.
	Access Point MA.6.GR.1.AP. 2 Count the distance between two ordered pairs with the same x-coordinate or the same y-coordinate.
MA.6.GR.1.3	Solve mathematical and real-world problems by plotting points on a coordinate plane, including finding the perimeter or area of a rectangle.
	Access Point MA.6.GR.1.AP. 3 Given a rectangle plotted on the coordinate plane, find the perimeter or area of the rectangle.
MA.6.GR. 2 Model and solve problems involving two-dimensional figures and threedimensional figures.	
MA.6.GR.2.1	Derive a formula for the area of a right triangle using a rectangle. Apply a formula to find the area of a triangle.
	Access Point MA.6.GR.2.AP. 1 Given the formula, find the area of a triangle.
MA.6.GR.2.2	Solve mathematical and real-world problems involving the area of quadrilaterals and composite figures by decomposing them into triangles or rectangles.
	Access Point MA.6.GR.2.AP. 2 Decompose quadrilaterals and composite figures into simple shapes (rectangles or triangles) to measure area.

MA.6.GR.2.3	Solve mathematical and real-world problems involving the volume of right rectangular prisms with positive rational number edge lengths using a visual model and a formula.
	Access Point MA.6.GR.2.AP.3 Given a real-world problem, find the volume of a rectangular prism using a visual model and the formula.
MA.6.GR.2.4	Given a mathematical or real-world context, find the surface area of right rectangular prisms and right rectangular pyramids using the figure's net.
	Access Point MA.6.GR.2.AP.4 Find the surface area of right rectangular prisms by adding the areas of the shapes forming the two-dimensional net.
MA.6.DP.1 Develop an understanding of statistics and determine measures of center and measures of $\boldsymbol{\text { arariability. Summarize statistical distributions graphically and }}$ numerically.	Recognize and formulate a statistical question that would generate numerical data.
MA.6.DP.1.1	Access Point MA.6.DP.1.AP.1 Identify statistical questions from a list that would generate numerical data.
MA.6.DP.1.2	Given a numerical data set within a real-world context, find and interpret mean, median, mode and range.
	Access Point MA.6.DP.1.AP.2a Use tools to identify and calculate the mean, median, mode and range represented in a set of data with no more than five elements.
MA.6.DP.1.AP.2b Identify and explain what the mean and mode represent in a set of data with no more than five elements.	
MA.6.DP.1.4	Given a box plot within a real-world context, determine the minimum, the lower quartile, the median, the upper quartile and the maximum. Use this summary of the data to describe the spread and distribution of the data.
Access Point	
MA.6.DP.1.AP.3 Given a box plot, identify the value of the	
minimum, the lower quartile, the median, the upper quartile and the	
maximum.	

MA.6.DP.1.5	Create box plots and histograms to represent sets of numerical data within real-world contexts.
	Access Point MA.6.DP.1.AP.5 Create histograms to represent sets of numerical data with 10 or fewer elements.
MA.6.DP.1.6	Given a real-world scenario, determine and describe how changes in data values impact measures of center and variation.
	Access Point MA.6.DP.1.AP.6 Calculate and identify changes (increase or decrease) in the median, mode or range when a data value is added or subtracted from a data set.

Grade 7

Number Sense and Operations

MA.7.NSO. 1 Rewrite numbers in equivalent forms.

| MA.7.NSO.1.1 | Know and apply the Laws of Exponents to evaluate numerical
 expressions and generate equivalent numerical expressions, limited |
| :--- | :--- | to whole-number exponents and rational number bases.

Access Point

MA.7.NSO.1.AP. 1 Use properties of whole number exponents to produce equivalent expressions.
MA.7.NSO.1.2 \quad Rewrite rational numbers in different but equivalent forms including fractions, mixed numbers, repeating decimals and percentages to solve mathematical and real-world problems.

Access Point

MA.7.NSO.1.AP. 2 Rewrite positive rational numbers in different but equivalent forms such as fractions, mixed numbers, repeating decimals and/or percentages to solve problems.
MA.7.NSO. 2 Add, subtract, multiply and divide rational numbers.

MA.7.NSO.2.1	Solve mathematical problems using multi-step order of operations with rational numbers including grouping symbols, whole-number exponents and absolute value.

Access Point
MA.7.NSO.2.AP.1 Solve mathematical problems, using no more than four operations, with rational numbers including grouping symbols, whole-number exponents and absolute value.
MA.7.NSO.2.2 \quad Add, subtract, multiply and divide rational numbers with procedural fluency.
Access Point
MA.7.NSO.2.AP. 2 Using tools or models, add, subtract, multiply and divide rational numbers.
MA.7.NSO.2.3 \quad Solve real-world problems involving any of the four operations with rational numbers.
Access Point
MA.7.NSO.2.AP. 3 Using tools or models, solve real-world problems involving any of the four operations with rational numbers.

Algebraic Reasoning	
MA.7.AR.1 Rewrite algebraic expressions in equivalent forms.	
MA.7.AR.1.1	Apply properties of operations to add and subtract linear expressions with rational coefficients.
	Access Point MA.7.AR.1.AP.1 Add and subtract linear expressions that include like terms.

MA.7.AR.1.2	Determine whether two linear expressions are equivalent.
	Access Point MA.7.AR.1.AP.2 Use tools or manipulatives to compare two linear expressions, with no more than two operations, to determine whether they are equivalent.
MA.7.AR.2 Write and solve equations and inequalities in one variable.	
MA.7.AR.2.1	Write and solve one-step inequalities in one variable within a mathematical context and represent solutions algebraically or graphically.
	Access Point MA.7.AR.2.AP.1 Select a one-step inequality from a list that represents a real-world situation and given a set of three or fewer values, use substitution to solve.
MA.7.AR.2.2	Write and solve two-step equations in one variable within a mathematical or real-world context, where all terms are rational numbers.
	Access Point MA.7.AR.2.AP.2a Set up two-step equations in one variable based on real-world problems.
	MA.7.AR.2.AP.2b Solve two-step equations in one variable based on real-world problems, where all terms have positive integer coefficients.
MA.7.AR.3 Use percentages and proportional reasoning to solve problems.	

MA.7.AR.4.2	Determine the constant of proportionality within a mathematical or real-world context given a table, graph or written description of a proportional relationship.
	Access Point MA.7.AR.4.AP. 2 Identify the constant of proportionality when given a table or graph of a proportional relationship.
MA.7.AR.4.3	Given a mathematical or real-world context, graph proportional relationships from a table, equation or a written description.
	Access Point MA.7.AR.4.AP. 3 Given a table or equation, graph a proportional relationship.
MA.7.AR.4.4	Given any representation of a proportional relationship, translate the representation to a written description, table or equation.
	Access Point MA.7.AR.4.AP. 4 Given a table representation of a proportional relationship, translate the relationship into an equation or a graph.
MA.7.AR.4.5	Solve real-world problems involving proportional relationships.
	Access Point MA.7.AR.4.AP.5 Solve simple real-world problems involving proportional relationships.
Geometric Reasoning	
MA.7.GR. 1 Solve problems involving two-dimensional figures, including circles.	
MA.7.GR.1.1	Apply formulas to find the areas of trapezoids, parallelograms and rhombi.
	Access Point MA.7.GR.1.AP. 1 Given the formulas, find the area of parallelograms and rhombi.
MA.7.GR.1.2	Solve mathematical or real-world problems involving the area of polygons or composite figures by decomposing them into triangles or quadrilaterals.
	Access Point MA.7.GR.1.AP. 2 Decompose complex shapes (polygon, trapezoid, and pentagon) into simple shapes (rectangles, squares, triangles) to measure area.
MA.7.GR.1.3	Explore the proportional relationship between circumferences and diameters of circles. Apply a formula for the circumference of a circle to solve mathematical and real-world problems.
	Access Point MA.7.GR.1.AP. 3 Apply a given formula for the circumference of a circle to solve mathematical problems.
MA.7.GR.1.4	Explore and apply a formula to find the area of a circle to solve mathematical and real-world problems.
	Access Point MA.7.GR.1.AP. 4 Apply a given formula to find the area of a circle to solve mathematical problems.

MA.7.GR.1.5	Solve mathematical and real-world problems involving dimensions and areas of geometric figures, including scale drawings and scale factors.
	Access Point MA.7.GR.1.AP.5 Use a scale factor to draw a scale drawing of a real-world two-dimensional polygon on graph paper.
MA.7.GR.2 Solve problems involving three-dimensional figures, including right circular cylinders.	
MA.7.GR.2.1	Given a mathematical or real-world context, find the surface area of a right circular cylinder using the figure's net.
	Access Point MA.7.GR.2.AP.1 Match the parts of a given formula to the right circular cylinder using the figure's net.
MA.7.GR.2.2	Solve real-world problems involving surface area of right circular cylinders.
	Access Point MA.7.GR.2.AP.2 Given the formula, use tools to find the surface area of a right circular cylinder using the figure's net.
MA.7.GR.2.3	Solve mathematical and real-world problems involving volume of right circular cylinders.
	Access Point MA.7.GR.2.AP.3 Given a formula, use tools to calculate the volume of right circular cylinders.
MA.7.DP.1 Represent and interpret numerical and categorical data.	
MA.7.DP.1.1	Determine an appropriate measure of center or measure of variation to summarize numerical data, represented numerically or graphically, taking into consideration the context and any outliers.
MA.7.DP.1.2	Access Point MA.7.DP.1.AP.1 Use context to determine the appropriate measure of center (mean or median) or range to summarize a numerical data set with 10 or fewer elements, represented numerically or graphically.
Given two numerical or graphical representations of data, use the measures) of center and measure(s) of variability to make comparisons, interpret results and draw conclusions about the two populations.	
Access Point MA.7.DP.1.AP.2 Given two numerical or graphical representations of data in the same form, compare the mean, median or range of each representation.	

MA.7.DP.1.3	Given categorical data from a random sample, use proportional relationships to make predictions about a population.
Access Point MA.7.DP.1.AP.3 Given data from a random sample of the population, select from a list an appropriate prediction about the population based on the data.	
MA.7.DP.1.4	Use proportional reasoning to construct, display and interpret data in circle graphs.
	Access Point MA.7.DP.1.AP.4 Use proportional reasoning to interpret data in a pie chart.
MA.7.DP.1.5	Given a real-world numerical or categorical data set, choose and create an appropriate graphical representation.
	Access Point MA.7.DP.1.AP.5 Given a data set, select an appropriate graphical representation (histogram, bar chart, or line plot).
MA.7.DP.2 Develop an understanding of probability. Find and compare experimental and theoretical probabilities.	
MA.7.DP.2.1	Determine the sample space for a simple experiment.
Access Point MA.7.DP.2.AP.1 Use tree diagrams, frequency tables, organized lists, and/or simulations to collect data from a simple experiment.	
MA.7.DP.2.2	Given the probability of a chance event, interpret the likelihood of it occurring. Compare the probabilities of chance events.
Access Point MA.7.DP.2.AP.2 Given the probability of a simple chance event written as a fraction, percentage or decimal between 0 and 1, determine how likely is it that an event will occur.	
MA.7.DP.2.4	Find the theoretical probability of an event related to a simple experiment.
Access Point MA.7.DP.2.AP.3 Determine the theoretical probability of a simple chance event.	
Use a simulation of a simple experiment to find experimental probabilities and compare them to theoretical probabilities.	
Access Point MA.7.DP.2.AP.4 Conduct a simple experiment to find experimental probabilities.	

Grade 8

Number Sense and Operations

MA.8.NSO.1 Solve problems involving rational numbers, including numbers in scientific notation, and extend the understanding of rational numbers to irrational numbers.

MA.8.NSO.1.1	Extend previous understanding of rational numbers to define irrational numbers within the real number system. Locate an approximate value of a numerical expression involving irrational numbers on a number line.
	Access Point MA.8.NSO.1.AP.1 Locate approximations of irrational numbers on a number line.
MA.8.NSO.1.2	Plot, order and compare rational and irrational numbers, represented in various forms.
	Access Point MA.8.NSO.1.AP.2 Use appropriate tools to plot, order, and compare simple square roots and cube roots for quantities less than 100.
MA.8.NSO.1.3	Extend previous understanding of the Laws of Exponents to include integer exponents. Apply the Laws of Exponents to evaluate numerical expressions and generate equivalent numerical expressions, limited to integer exponents and rational number bases, with procedural fluency.

Access Point

MA.8.NSO.1.AP. 3 Use the properties of integer exponents and product/quotient of powers with like bases to produce equivalent expressions.
MA.8.NSO.1.4 \quad Express numbers in scientific notation to represent and approximate very large or very small quantities. Determine how many times larger or smaller one number is compared to a second number.

Access Point

MA.8.NSO.1.AP. 4 Multiply a single-digit number by the power of 10 using a calculator. Identify whether the number in scientific notation represents a very large or very small quantity.

MA.8.NSO.1.5	Add, subtract, multiply and divide numbers expressed in scientific notation with procedural fluency.
	Access Point MA.8.NSO.1.AP.5 Perform operations with numbers expressed in scientific notation using a calculator.
MA.8.NSO.1.6	Solve real-world problems involving operations with numbers expressed in scientific notation.
	Access Point MA.8.NSO.1.AP.6 Given a real-world problem, perform operations with numbers expressed in scientific notation using a calculator and interpret the answer in context.

MA.8.NSO.1.7	Solve multi-step mathematical and real-world problems involving the order of operations with rational numbers including exponents and radicals.
	Access Point MA.8.NSO.1.AP.7 Use tools to solve multi-step mathematical problems, with four or fewer steps, involving the order of operations with rational numbers including exponents and perfect squares and/or square roots.
MA.8.AR.1 Generate equivalent algebraic expressions.	

expressions, limited to integer exponents and monomial bases.\end{array}

\hline \& $$
\begin{array}{l}\text { Access Point } \\
\text { MA.8.AR.1.AP.1 Use the properties of integer exponents and } \\
\text { product/quotient of powers with like bases to produce equivalent } \\
\text { algebraic expressions limited to positive exponents and monomial } \\
\text { bases. }\end{array}
$$

\hline MA.8.AR.1.2 \& $$
\begin{array}{l}\text { Apply properties of operations to multiply two linear expressions } \\
\text { with rational coefficients. }\end{array}
$$

\hline \& $$
\begin{array}{l}\text { Access Point } \\
\text { MA.8.AR.1.AP.2 Use the distributive property to multiply a } \\
\text { monomial by a linear expression. }\end{array}
$$

\hline MA.8.AR.1.3 \& $$
\begin{array}{l}\text { Rewrite the sum of two algebraic expressions having a common } \\
\text { monomial factor as a common factor multiplied by the sum of two } \\
\text { algebraic expressions. }\end{array}
$$

\hline \& $$
\begin{array}{l}\text { Access Point } \\
\text { MA.8.AR.1.AP.3 Rewrite the sum of two linear algebraic expressions } \\
\text { having a common whole number monomial factor as the common } \\
\text { factor multiplied by the sum of two linear algebraic expressions. }\end{array}
$$

\hline MA.8.AR.2.2 \& $$
\begin{array}{l}\text { Solve two-step linear inequalities in one variable and represent } \\
\text { solutions algebraically and graphically. }\end{array}
$$

\hline $$
\begin{array}{l}\text { Access Point } \\
\text { MA.8.AR.2.AP.2 Select a two-step inequality from a list that } \\
\text { represents a real-world situation and use substitution to solve. }\end{array}
$$

\hline MA.8.AR.2.1 \& $$
\begin{array}{l}\text { Solve multi-step linear equations in one variable, with rational } \\
\text { number coefficients. Include equations with variables on both sides. }\end{array}
$$

\hline $$
\begin{array}{l}\text { Access Point } \\
\text { MA.8.AR.2.AP.1a Identify the steps to solve a given multi-step } \\
\text { equation in one variable, with integers coefficients. Include } \\
\text { equations with variables on both sides. }\end{array}
$$

\hline MA.8.AR.2.AP.1b Solve multi-step equations in one variable, with

integers coeficients. Include\end{array}\right|\)

MA.8.AR.2.3	Given an equation in the form of $\mathrm{xx}^{2}=p p$ and $\mathrm{xx}^{3}=q q$, where pp is a whole number and $q q$ is an integer, determine the real solutions.
	Access Point MA.8.AR.2.AP. 3 Given an equation in the form of $x^{2}=p$ and $x^{3}=q$, use tools to determine real solutions where p is a perfect square up to 144 and q is a perfect cube from -125 to 125 .
MA.8.AR. 3 Extend understanding of proportional relationships to two-variable linear equations.	
MA.8.AR.3.1	Determine if a linear relationship is also a proportional relationship.
	Access Point MA.8.AR.3.AP.1 MA.8.AR.3.AP. 1 Given a table, a graph, or equation, determine whether a linear relationship is proportional.
MA.8.AR.3.2	Given a table, graph or written description of a linear relationship, determine the slope.
	Access Point MA.8.AR.3.AP. 2 Given a table or graph of a linear relationship, identify the slope.
MA.8.AR.3.3	Given a table, graph or written description of a linear relationship, write an equation in slope-intercept form.
	Access Point MA.8.AR.3.AP. 3 Given a table or graph of a linear relationship, identify from a list, the equation in slope-intercept form.
MA.8.AR.3.4	Given a mathematical or real-world context, graph a two-variable linear equation from a written description, a table or an equation in slope-intercept form.
	Access Point MA.8.AR.3.AP. 4 Graph a two-variable linear equation from a table or an equation in slope-intercept form.
MA.8.AR.3.5	Given a real-world context, determine and interpret the slope and $t t$ intercept of a two-variable linear equation from a written description, a table, a graph or an equation in slope-intercept form.
	Access Point MA.8.AR.3.AP. 5 Given a real-world context, identify the slope and y-intercept of a two-variable linear equation from a table, a graph or an equation in slope-intercept form.
MA.8.AR. 4 Develop an understanding of two-variable systems of equations.	
MA.8.AR.4.1	Given a system of two linear equations and a specified set of possible solutions, determine which ordered pairs satisfy the system of linear equations.
	Access Point MA.8.AR.4.AP.1a Given a system of two linear equations displayed on a graph, identify the solution of a system as the point where the two lines intersect.
	MA.8.AR.4.AP.1b Identify the coordinates of the point of intersection for two linear equations plotted on a coordinate plane.

MA.8.AR.4.2	Given a system of two linear equations represented graphically on the same coordinate plane, determine whether there is one solution, no solution or infinitely many solutions.
	Access Point MA.8.AR.4.AP.2 Given a system of two linear equations represented graphically on the same coordinate plane, identify whether there is one solution or no solution.
MA.8.AR.4.3	Given a mathematical or real-world context, solve systems of two linear equations by graphing.
	Access Point MA.8.AR.4.AP.3 Given two sets of coordinates for two lines, plot the lines on a coordinate plane and describe or select the solution to a system of linear equations.
MA.8.F.1 Define, evaluate and compare functions.	
MA.8.F.1.1	Given a set of ordered pairs, a table, a graph or mapping diagram, determine whether the relationship is a function. Identify the domain and range of the relation.
	Access Point MA.8.F.1.AP.1a Given a set of ordered pairs, a table or mapping diagram identify whether the relationship is a function.
	MA.8.F.1.AP.1b Given a set of ordered pairs, a table or mapping diagram identify the domain and range of the relation.
MA.8.F.1.2	Given a function defined by a graph or an equation, determine whether the function is a linear function. Given an input-output table, determine whether it could represent a linear function.
Mccess Point MA.8.F.1.AP.2 Given a function displayed on a graph or an equation, identify whether the function is a linear function.	
relationships involving triangles.	

MA.8.GR.1.2	Apply the Pythagorean Theorem to solve mathematical and realworld problems involving the distance between two points in a coordinate plane.
	Access Point MA.8.GR.1.AP. 2 Given the Pythagorean Theorem, determine lengths/distances between two points in a coordinate system by forming right triangles, with natural number side lengths.
MA.8.GR.1.3	Use the Triangle Inequality Theorem to determine if a triangle can be formed from a given set of sides. Use the converse of the Pythagorean Theorem to determine if a right triangle can be formed from a given set of sides.
	Access Point MA.8.GR.1.AP.3a Measure the sides of triangles to establish facts about the Triangle Inequality Theorem (i.e., the sum of two side lengths is greater than the third side).
	MA.8.GR.1.AP.3b Substitute the side lengths of a given figure into the Pythagorean Theorem to determine if a right triangle can be formed.
MA.8.GR.1.4	Solve mathematical problems involving the relationships between supplementary, complementary, vertical or adjacent angles.
	Access Point MA.8.GR.1.AP. 4 Identify supplementary, complementary, vertical or adjacent angle relationships.
MA.8.GR.1.5	Solve problems involving the relationships of interior and exterior angles of a triangle.
	Access Point MA.8.GR.1.AP. 5 Given an image, solve simple problems involving the relationships of interior and exterior angles of a triangle.
MA.8.GR.1.6	Develop and use formulas for the sums of the interior angles of regular polygons by decomposing them into triangles.
	Access Point MA.8.GR.1.AP. 6 Use tools to calculate the sum of the interior angles of regular polygons when given the formula.
MA.8.GR. 2 Understand similarity and congruence using models and transformations.	
MA.8.GR.2.1	Given a preimage and image generated by a single transformation, identify the transformation that describes the relationship.
	Access Point MA.8.GR.2.AP. 1 Given two figures on a coordinate plane, identify if the image is translated, rotated or reflected.
MA.8.GR.2.2	Given a preimage and image generated by a single dilation, identify the scale factor that describes the relationship.
	Access Point MA.8.GR.2.AP. 2 Given a preimage and image describe the effect the dilation has on the two figures.

MA.8.GR.2.3	Describe and apply the effect of a single transformation on twodimensional figures using coordinates and the coordinate plane.
	Access Point MA.8.GR.2.AP. 3 Identify the coordinates of the vertices of a common polygon after a single translation, rotation or dilation on the coordinate plane.
MA.8.GR.2.4	Solve mathematical and real-world problems involving proportional relationships between similar triangles.
	Access Point MA.8.GR.2.AP. 4 Use tools to solve mathematical problems using proportions between similar triangles.
Data Analysis and Probability	
MA.8.DP. 1 Represent and investigate numerical bivariate data	
MA.8.DP.1.1	Given a set of real-world bivariate numerical data, construct a scatter plot or a line graph as appropriate for the context.
	Access Point MA.8.DP.1.AP. 1 Graph bivariate data using a scatter plot.
MA.8.DP.1.2	Given a scatter plot within a real-world context, describe patterns of association.
	Access Point MA.8.DP.1.AP. 2 Given a scatter plot, identify whether the patterns of association are no association, positive association, negative association, linear or nonlinear.
MA.8.DP.1.3	Given a scatter plot with a linear association, informally fit a straight line.
	Access Point MA.8.DP.1.AP. 3 Given a scatter plot with a linear association, use tools to draw or place a line of fit.
MA.8.DP. 2 Represent and find probabilities of repeated experiments.	
MA.8.DP.2.1	Determine the sample space for a repeated experiment.
	Access Point MA.8.DP.2.AP. 1 Use a tool (table, list or tree diagram) to record results of a repeated experiment.
MA.8.DP.2.2	Find the theoretical probability of an event related to a repeated experiment.
	Access Point MA.8.DP.2.AP. 2 Select the theoretical probability of an event related to a repeated experiment from a list.

MA.8.DP.2.3	Solve real-world problems involving probabilities related to single or repeated experiments, including making predictions based on theoretical probability.
	Access Point MA.8.DP.2.AP.3 Compare actual results of an experiment with its theoretical probability (e.g., make a statement that describes the relationship between the actual results of an experiment with its theoretical probability [e.g., more, less, same, different, equal]).

9-12 Overview

9-12 Number Sense and Operations Strand

MA.912.NSO.1 Generate equivalent expressions and perform operations with expressions involving exponents, radicals or logarithms.	
MA.912.NSO.1.1	Extend previous understanding of the Laws of Exponents to include rational exponents. Apply the Laws of Exponents to evaluate numerical expressions and generate equivalent numerical expressions involving rational exponents.
	Access Point MA.912.NSO.1.AP.1 Evaluate numerical expressions involving rational exponents.
MA.912.NSO.1.2	Generate equivalent algebraic expressions using the properties of exponents.
	Access Point MA.912.NSO.1.AP.2 Identify equivalent algebraic expressions using properties of exponents.
MA.912.NSO.1.3	Generate equivalent algebraic expressions involving radicals or rational exponents using the properties of exponents. Radicands are limited to monomial algebraic expressions.
	Access Point MA.912.NSO.1.AP.3 Using properties of exponents, identify equivalent algebraic expressions involving radicals and rational exponents. Radicands are limited to monomial algebraic expression.
MA.912.NSO.1.4	Apply previous understanding of operations with rational numbers to add, subtract, multiply and divide numerical radicals.
Access Point MA.912.NSO.1.AP.4 Apply previous understanding of operations with rational numbers to add and subtract numerical radicals that are in radical form.	

$\left.\left.\begin{array}{|l|l|}\hline \text { MA.912.NSO.1.5 } & \begin{array}{l}\text { Add, subtract, multiply and divide algebraic expressions } \\ \text { involving radicals. Radicands are limited to monomial algebraic } \\ \text { expressions. }\end{array} \\ \hline & \begin{array}{l}\text { Access Point } \\ \text { MA.912.NSO.1.AP.5 Add and subtract algebraic expressions } \\ \text { involving radicals. Radicands are limited to monomial algebraic } \\ \text { expressions. }\end{array} \\ \hline \text { MA.912.NSO.1.6 } & \begin{array}{l}\text { Given a numerical logarithmic expression, evaluate and generate } \\ \text { equivalent numerical expressions using the properties of } \\ \text { logarithms or exponents. }\end{array} \\ \hline & \begin{array}{l}\text { Access Point } \\ \text { MA.912.NSO.1.AP.6 Given a numerical logarithmic expression, } \\ \text { identify an equivalent numerical expression using the properties } \\ \text { of logarithms or exponents. }\end{array} \\ \hline \text { MA.912.NSO.1.7 } & \begin{array}{l}\text { Given an algebraic logarithmic expression, generate an } \\ \text { equivalent algebraic expression using the properties of } \\ \text { logarithms or exponents. }\end{array} \\ \hline & \begin{array}{l}\text { Access Point } \\ \text { MA.912.NSO.1.AP.7 Given an algebraic logarithmic } \\ \text { expression, identify an equivalent algebraic expression using the } \\ \text { properties of logarithms or exponents. }\end{array} \\ \hline \text { MA.912.NSO.2 Represent and perform operations with expressions within the complex } \\ \text { number system. }\end{array} \right\rvert\, \begin{array}{l}\text { Extend previous understanding of the real number system to } \\ \text { include the complex number system. Add, subtract, multiply and } \\ \text { divide complex numbers. }\end{array}\right\}$

9-12 Algebraic Reasoning Strand

MA.912.AR.1 Interpret and rewrite algebraic expressions and equations in equivalent forms.	
MA.912.AR.1.1	Identify and interpret parts of an equation or expression that represent a quantity in terms of a mathematical or real-world context, including viewing one or more of its parts as a single entity.
	Access Point MA.912.AR.1.AP.1 Identify a part(s) of an equation or expression and explain the meaning within the context of a problem.
MA.912.AR.1.2	Rearrange equations or formulas to isolate a quantity of interest.
	Access Point MA.912.AR.1.AP.2 Rearrange an equation or a formula for a specific variable.
MA.912.AR.1.3	Add, subtract and multiply polynomial expressions with rational number coefficients.
	Access Point MA.912.AR.1.AP.3 Add, subtract and multiply polynomial expressions with integer coefficients.
MA.912.AR.1.4	Divide a polynomial expression by a monomial expression with rational number coefficients.
	Access Point MA.912.AR.1.AP.4 Divide a polynomial expression by a monomial expression with integer coefficients.
MA.912.AR.1.5	Divide polynomial expressions using long division, synthetic division and algebraic manipulation.
Access Point	
MA.912.AR.1.AP.5 Divide polynomial expressions using long	
division, synthetic division and algebraic manipulation where	
the denominator is a linear expression.	

MA.912.AR.1.8	Rewrite a polynomial expression as a product of polynomials over the real or complex number system.			
	Access Point MA.912.AR.1.AP.8 Select a polynomial expression as a product of polynomials with integer coefficients over the real or complex number system.			
MA.912.AR.1.9	Apply previous understanding of rational number operations to add, subtract, multiply and divide rational expressions.			
	Access Point MA.912.AR1.AP.9 Apply previous understanding of rational number operations with common denominators to add and subtract rational expressions.			
\boldsymbol{y}				
MA.912.AR.2 Write, solve and graph linear equations, functions and inequalities in one				
and two variables.		\quad	MA.912.AR.2.1	Given a real-world context, write and solve one-variable multi- step linear equations.
:---	:---			
	Access Point MA.912.AR.2.AP.1 Given an equation in a real-world context, solve one-variable multi-step linear equations.			
MA.912.AR.2.2	Write a linear two-variable equation to represent relationships between quantities from a graph, a written description or a table of values within a mathematical or real-world context.			
	Access Point MA.912.AR.2.AP.2 Select a linear two-variable equation to represent relationships between quantities from a graph, a written description or a table of values within a mathematical or real-world context.			
MA.912.AR.2.4	Write a linear two-variable equation for a line that is parallel or perpendicular to a given line and goes through a given point.			
MA.912.AR.2.3	Access Point MA.912.AR.2.AP.3 Select a linear two-variable equation in slope intercept form for a line that is parallel or perpendicular to a given line and goes through a given point.			
Given a table, equation or written description of a linear				
function, graph that function, and determine and interpret its key				
features.				

MA.912.AR.2.5	Solve and graph mathematical and real-world problems that are modeled with linear functions. Interpret key features and determine domain constraints in terms of the context.
	Access Point MA.912.AR.2.AP.5 Given a mathematical and/or real-world problem that is modeled with linear functions, solve the mathematical problem, or select the graph using key features (in terms of context) that represents this model.
MA.912.AR.2.6	Given a mathematical or real-world context, write and solve one-variable linear inequalities, including compound inequalities. Represent solutions algebraically or graphically.
	Access Point MA.912.AR.2.AP.6 Given a mathematical and/or real-world context, select a one-variable linear inequality that represents the solution algebraically or graphically.
MA.912.AR.2.7	Write two-variable linear inequalities to represent relationships between quantities from a graph or a written description within a mathematical or real-world context.
MA.912.AR.2.8	Access Point MA.912.AR.2.AP.7 Select a two-variable linear inequality to represent relationships between quantities from a graph.
	Given a mathematical or real-world context, graph the solution set to a two-variable linear inequality.
Access Point	
MA.912.AR.2.AP.8 Given a two-variable linear inequality,	
select a graph that represents the solution.	

MA.912.AR.3.3	Given a mathematical or real-world context, write and solve one-variable quadratic inequalities over the real number system. Represent solutions algebraically or graphically.
	Access Point MA.912.AR.3.AP.3 Given a mathematical or real-world context, select a one-variable quadratic inequality over the real number system that represents the solution algebraically or graphically.
MA.912.AR.3.4	Write a quadratic function to represent the relationship between two quantities from a graph, a written description or a table of values within a mathematical or real-world context.
	Access Point MA.912.AR.3.AP.4 Select a quadratic function to represent the relationship between two quantities from a graph.
MA.912.AR.3.5	Given the x-intercepts and another point on the graph of a quadratic function, write the equation for the function
	Access Point MA.912.AR.3.AP.5 Given the x-intercepts and another point on the graph of a quadratic function, select the equation for the function.
MA.912.AR.3.6	Given an expression or equation representing a quadratic function, determine the vertex and zeros and interpret them in terms of a real-world context.
Access Point	
MA.912.AR.3.AP.6 Given an expression or equation	
representing a quadratic function in vertex form, determine the	
vertex and zeros.	

MA.912.AR.3.9	Given a mathematical or real-world context, write two-variable quadratic inequalities to represent relationships between quantities from a graph or a written description.
	Access Point MA.912.AR.3.AP.9 Select two-variable quadratic inequalities to represent relationships between quantities from a graph or a written description.
MA.912.AR.3.10	Given a mathematical or real-world context, graph the solution set to a two-variable quadratic inequality.
	Access Point MA.912.AR.3.AP.10 Select the graph of the solution set to a two-variable quadratic inequality.
MA.912.AR.4 Write, solve and graph absolute value equations, functions and inequalities in one and two variables.	
MA.912.AR.4.1	Given a mathematical or real-world context, write and solve one-variable absolute value equations.
MA.912.AR.4.2	Access Point MA.912.AR.4.AP.1 Solve a one variable absolute value equation.
Given a mathematical or real-world context, write and solve one-variable absolute value inequalities. Represent solutions algebraically or graphically.	
	Access Point MA.912.AR.4.AP.2 Solve a one-variable absolute value inequality. Represent solutions algebraically or graphically.
MA.912.AR.4.3	Given a table, equation or written description of an absolute value function, graph that function and determine its key features.
Access Point	
MA.912.AR.4.AP.3 Given a table, equation or written	
description of an absolute value function, select the graph that	
represents the function.	

MA.912.AR.5 Write, solve and graph exponential and logarithmic equations and functions in one and two variables.	
MA.912.AR.5.2	Solve one-variable equations involving logarithms or exponential expressions. Interpret solutions as viable in terms of the context and identify any extraneous solutions.
	Access Point MA.912.AR.5.AP.2 Solve one-variable equations involving logarithms or exponential expressions. Identify any extraneous solutions.
MA.912.AR.5.3	Given a mathematical or real-world context, classify an exponential function as representing growth or decay.
	Access Point MA.912.AR.5.AP.3 Given a real-world context, identify an exponential function as representing growth or decay.
MA.912.AR.5.4	Write an exponential function to represent a relationship between two quantities from a graph, a written description or a table of values within a mathematical or real-world context.
	Access Point MA.912.AR.5.AP.4 Select an exponential function to represent two quantities from a graph or a table of values.
MA.912.AR.5.5	Given an expression or equation representing an exponential function, reveal the constant percent rate of change per unit interval using the properties of exponents. Interpret the constant percent rate of change in terms of a real-world context.
Access Point	
MA.912.AR.5.AP.5 Given an expression or equation	
representing an exponential function, reveal the constant percent	
rate of change per unit interval using the properties of	
exponents.	

MA.912.AR.5.8	Given a table, equation or written description of a logarithmic function, graph that function and determine its key features.
	Access Point MA.912.AR.5.AP.8 Given an equation of a logarithmic function, select the graph of that function.
MA.912.AR.5.9	Solve and graph mathematical and real-world problems that are modeled with logarithmic functions. Interpret key features and determine constraints in terms of the context.
	Access Point MA.912.AR.5.AP.9 Given a mathematical and/or real-world problem that is modeled with logarithmic functions, solve the mathematical problem, or select the graph using key features (in terms of context) that represents this model.
MA.912.AR.6 Solve and gariables.	graph polynomial equations and functions in one and two
MA.912.AR.6.1	Given a mathematical or real-world context, when suitable factorization is possible, solve one-variable polynomial equations of degree 3 or higher over the real and complex number systems.
	Access Point MA.912.AR.6.AP.1 Solve one-variable polynomial equations of degree 3 or higher in factored form, over the real number system.
MA.912.AR.6.5	Sketch a rough graph of a polynomial function of degree 3 or higher using zeros, multiplicity and knowledge of end behavior.
Access Point	
MA.912.AR.6.AP.5 Create a rough graph of a polynomial	
function of degree 3 or higher (in factored form) using zeros,	
multiplicity and knowledge of end behavior.	

MA.912.AR.7.3	Solve and graph mathematical and real-world problems that are modeled with square root or cube root functions. Interpret key features in context.
	Access Point MA.912.AR.7.AP.3 Given a mathematical and/or real-world problem that is modeled with square root or cube root functions, solve the mathematical problem, or select the graph using key features (in terms of context) that represents this model.
MA.912.AR.8 Solve and gariables.	Mational equations and functions in one and two
MA.912.AR.8.1	Write and solve one-variable rational equations. Interpret solutions as viable in terms of the context and identify any extraneous solutions.
MA.912.AR.8.2	Access Point MA.912.AR.8.AP.1 Solve one-variable rational equations and identify any extraneous solutions.
	Given a table, equation or written description of a rational function, graph that function and determine its key features.
	Access Point MA.912.AR.8.AP.2 Given a table, equation or written description of a rational function, select the graph that represents the function.
MA.912.AR.8.3	Solve and graph mathematical and real-world problems that are modeled with rational functions. Interpret key features in terms of the context.
Access Point	
MA.912.AR.8.AP.3 Given a mathematical and/or real-world	
problem that is modeled with rational functions, solve the	
mathematical problem, or select the graph using key features (in	
terms of context) that represents this model.	

$\left.\left.\begin{array}{|l|l|}\hline \text { MA.912.AR.9.3 } & \begin{array}{l}\text { Given a mathematical or real-world context, solve a system } \\ \text { consisting of two-variable linear or non-linear equations } \\ \text { algebraically or graphically. }\end{array} \\ \hline & \begin{array}{l}\text { Access Point } \\ \text { MA.912.AR.9.AP.3 Solve a system consisting of two-variable } \\ \text { linear or quadratic equations algebraically or graphically. }\end{array} \\ \hline \text { MA.912.AR.9.4 } & \begin{array}{l}\text { Graph the solution set of a system of two-variable linear } \\ \text { inequalities. }\end{array} \\ \hline & \begin{array}{l}\text { Access Point } \\ \text { MA.912.AR.9.AP.4 Select the graph of the solution set of a } \\ \text { system of two-variable linear inequalities. }\end{array} \\ \hline \text { MA.912.AR.9.5 } & \begin{array}{l}\text { Graph the solution set of a system of two-variable inequalities. }\end{array} \\ \hline \text { Access Point } \\ \text { MA.912.AR.9.AP.5 Select the graph of the solution set of a } \\ \text { system of two-variable inequalities. }\end{array} \right\rvert\, \begin{array}{l}\text { Given a real-world context, represent constraints as systems of } \\ \text { linear equations or inequalities. Interpret solutions to problems } \\ \text { as viable or non-viable options. }\end{array}\right\}$

MA.912.F.1.2	Given a function represented in function notation, evaluate the function for an input in its domain. For a real-world context, interpret the output.
	Access Point MA.912.F.1.AP.2 Given a function represented in function notation, evaluate the function for an input in its domain.
MA.912.F.1.3	Calculate and interpret the average rate of change of a real-world situation represented graphically, algebraically or in a table over a specified interval.
	Access Point MA.912.F.1.AP.3 Given a real-world situation represented graphically or algebraically, identify the rate of change as positive, negative, zero or undefined.
MA.912.F.1.5	Compare key features of linear and nonlinear functions each represented in the same way, such as algebraically, graphically, in tables or written descriptions.
	Access Point MA.912.F.1.AP.5 Identify key features of linear and quadratic functions each represented in the same way algebraically or graphically (key features are limited to domain; range; intercepts; intervals where the function is increasing, decreasing, positive or
negative; end behavior).	

MA.912.F.2 Identify and describe the effects of transformations on functions. Create new functions given transformations.	
MA.912.F.2.1	Identify the effect on the graph or table of a given function after replacing (x) by $(x)+k k,(x x),(k x)$ and $(x x+k k)$ for specific values of $k k$.
	Access Point MA.912.F.2.AP. 1 Select the effect (up, down, left, or right) on the graph of a given function after replacing $f(x)$ by $f(x)+k$ and $f(x$ $+k$) for specific values of k.
MA.912.F.2.2	Identify the effect on the graph of a given function of two or more transformations defined by adding a real number to the x - or y values or multiplying the x - or y-values by a real number.
	Access Point MA.912.F.2.AP. 2 Identify the effect on the graph of a given function of two or more transformations defined by adding a real number to the x - or y-values.
MA.912.F.2.3	Given the graph or table of $(x x)$ and the graph or table of $(x x)+$ $k k,(x x),(k k x x)$ and $(x x+k k)$, state the type of transformation and find the value of the real number $k k$.
	Access Point MA.912.F.2.AP. 3 Given the graph of a given function after replacing $f(x)$ by $f(x)+k$ and $f(x+k), k f(x)$, for specific values of k select the type of transformation and find the value of the real number k.
MA.912.F.2.5	Given a table, equation or graph that represents a function, create a corresponding table, equation or graph of the transformed function defined by adding a real number to the ?- or ?-values or multiplying the ?- or ?-values by a real number.
	Access Point MA.912.F.2.AP. 5 Given a table, equation or graph that represents a function, select a corresponding table, equation or graph of the transformed function defined by adding a real number to the x - or y values.
MA.912.F.3 Create new functions from existing functions.	
MA.912.F.3.2	Given a mathematical or real-world context, combine two or more functions, limited to linear, quadratic, exponential and polynomial, using arithmetic operations. When appropriate, include domain restrictions for the new function.
	Access Point MA.912.F.3.AP. 2 Given a mathematical and/or real-world context, combine two or more functions, limited to linear, quadratic, and polynomial, using arithmetic operations of addition, subtraction, or multiplication.

MA.912.F.3.4	Represent the composition of two functions algebraically or in a table. Determine the domain and range of the composite function.
	Access Point MA.912.F.3.AP. 4 Given a composite function within a mathematical or real-world context, identify the domain and range of the composite function.
MA.912.F.3.6	Determine whether an inverse function exists by analyzing tables, graphs and equations.
	Access Point MA.912.F.3.AP. 6 Determine whether an inverse function exists by analyzing graphs and equations.
MA.912.F.3.7	Represent the inverse of a function algebraically, graphically or in a table. Use composition of functions to verify that one function is the inverse of the other.
	Access Point MA.912.F.3.AP. 7 Represent the inverse of a function algebraically. Use composition of functions to verify that one function is the inverse of the other.
9-12 Financial Literacy Strand	
MA.912.FL. 1 Determine simple and compound interest and demonstrate its relationship to functions. Calculate and use net present and net future values.	
MA.912.FL.3.1	Compare simple, compound and continuously compounded interest over time.
	Access Point MA.912.FL.3.AP. 1 Compare simple and compound interest over time.
MA.912.FL.3.2	Solve real-world problems involving simple, compound and continuously compounded interest.
	Access Point MA.912.FL.3.AP. 2 Solve real-world problems involving simple and compound interest.
MA.912.FL.3.4	Explain the relationship between simple interest and linear growth. Explain the relationship between compound interest and exponential growth and the relationship between continuously compounded interest and exponential growth.
	Access Point MA.912.FL.3.AP.4 Identify the relationship between simple interest and linear growth. Identify the relationship between compound interest and exponential growth.

9-12 Geometric Reasoning Strand

MA.912.GR.1 Prove and apply geometric theorems to solve problems.			
MA.912.GR.1.1	$\begin{array}{l}\text { Prove relationships and theorems about lines and angles. Solve } \\ \text { mathematical and real-world problems involving postulates, } \\ \text { relationships and theorems of lines and angles. }\end{array}$		
	$\begin{array}{l}\text { Access Point } \\ \text { MA.912.GR.1.AP.1 Use the relationships and theorems about lines } \\ \text { and angles to solve mathematical or real-world problems involving } \\ \text { postulates, relationships and theorems of lines and angles. }\end{array}$		
MA.912.GR.1.2	$\begin{array}{l}\text { Prove triangle congruence or similarity using Side-Side-Side, Side- } \\ \text { Angle-Side, Angle-Side-Angle, Angle-Angle-Side, Angle-Angle and } \\ \text { Hypotenuse-Leg. }\end{array}$		
	$\begin{array}{l}\text { Access Point } \\ \text { MA.912.GR.1.AP.2 Identify the triangle congruence or similarity } \\ \text { criteria; Side-Side-Side, Side-Angle-Side, Angle-Side-Angle, Angle- } \\ \text { Angle-Side, Angle-Angle and Hypotenuse-Leg. }\end{array}$		
MA.912.GR.1.3	$\begin{array}{l}\text { Prove relationships and theorems about triangles. Solve } \\ \text { mathematical and real-world problems involving postulates, } \\ \text { relationships and theorems of triangles. }\end{array}$		
	$\begin{array}{l}\text { Access Point } \\ \text { MA.912.GR.1.AP.3 Use the relationships and theorems about } \\ \text { triangles. Solve mathematical and/or real-world problems involving } \\ \text { postulates, relationships and theorems of triangles. }\end{array}$		
MA.912.GR.1.4	$\begin{array}{l}\text { Prove relationships and theorems about parallelograms. Solve } \\ \text { mathematical and real-world problems involving postulates, } \\ \text { relationships and theorems of parallelograms. }\end{array}$		
Access Point			
MA.912.GR.1.AP.4 Use the relationships and theorems about			
parallelograms. Solve mathematical and/or real-world problems			
involving postulates, relationships and theorems of parallelograms.		$\}$	Prove relationships and theorems about trapezoids. Solve
:---			
mathematical and real-world problems involving postulates,			
relationships and theorems of trapezoids.			

MA.912.GR. 2 Apply properties of transformations to describe congruence or similarity.	
MA.912.GR.2.1	Given a preimage and image, describe the transformation and represent the transformation algebraically using coordinates.
	Access Point MA.912.GR.2.AP.1a Given a preimage and image, identify the transformation.
	MA.912.GR.2.AP.1b Select the algebraic coordinates that represent the transformation.
MA.912.GR.2.2	Identify transformations that do or do not preserve distance.
	Access Point MA.912.GR.2.AP.2 Select a transformation that preserves distance.
MA.912.GR.2.3	Identify a sequence of transformations that will map a given figure onto itself or onto another congruent or similar figure.
	Access Point MA.912.GR.2.AP. 3 Identify a given sequence of transformations, that includes translations or reflections, that will map a given figure onto itself or onto another congruent figure.
MA.912.GR.2.5	Given a geometric figure and a sequence of transformations, draw the transformed figure on a coordinate plane.
	Access Point MA.912.GR.2.AP. 5 Given a geometric figure and a sequence of transformations, select the transformed figure on a coordinate plane.
MA.912.GR.2.6	Apply rigid transformations to map one figure onto another to justify that the two figures are congruent.
	Access Point MA.912.GR.2.AP. 6 Use rigid transformations that includes translations or reflections to map one figure onto another to show that the two figures are congruent.
MA.912.GR.2.8	Apply an appropriate transformation to map one figure onto another to justify that the two figures are similar.
	Access Point MA.912.GR.2.AP.8 Identify an appropriate transformation to map one figure onto another to show that the two figures are similar.
MA.912.GR. 3 Use coordinate geometry to solve problems or prove relationships.	
MA.912.GR.3.1	Determine the weighted average of two or more points on a line.
	Access Point MA.912.GR.3.AP. 1 Select the weighted average of two or more points on a line.

$\left.\begin{array}{|l|l|}\hline \text { MA.912.GR.3.2 } & \begin{array}{l}\text { Given a mathematical context, use coordinate geometry to classify or } \\ \text { justify definitions, properties and theorems involving circles, } \\ \text { triangles or quadrilaterals }\end{array} \\ \hline & \begin{array}{l}\text { Access Point } \\ \text { MA.912.GR.3.AP.2 Use coordinate geometry to classify definitions, } \\ \text { properties and theorems involving circles, triangles, or quadrilaterals. }\end{array} \\ \hline \text { MA.912.GR.3.3 } & \begin{array}{l}\text { Use coordinate geometry to solve mathematical and real-world } \\ \text { geometric problems involving lines, circles, triangles and } \\ \text { quadrilaterals. }\end{array} \\ \hline & \begin{array}{l}\text { Access Point } \\ \text { MA.912.GR.3.AP.3 Use coordinate geometry to solve mathematical } \\ \text { geometric problems involving lines, triangles and quadrilaterals. }\end{array} \\ \hline \text { MA.912.GR.3.4 } & \begin{array}{l}\text { Use coordinate geometry to solve mathematical and real-world } \\ \text { problems on the coordinate plane involving perimeter or area of } \\ \text { polygons. }\end{array} \\ \hline & \begin{array}{l}\text { Access Point } \\ \text { MA.912.GR.3.AP.4 Solve mathematical and/or real-world problems } \\ \text { on the coordinate plane involving perimeter or area of a three- or } \\ \text { four-sided polygon. }\end{array} \\ \hline \text { MA.912.GR.4 Use geometric measurement and dimensions to solve problems. } \\ \hline \text { MA.912.GR.4.1 } & \begin{array}{l}\text { Identify the shapes of two-dimensional cross sections of three- } \\ \text { dimensional figures. }\end{array} \\ \hline & \begin{array}{l}\text { Access Point } \\ \text { MA.912.GR.4.AP.1 Identify the shape of a two-dimensional cross } \\ \text { section of a three-dimensional figure. }\end{array} \\ \hline \text { MA.912.GR.4.2 } & \begin{array}{l}\text { Identify three-dimensional objects generated by rotations of two- } \\ \text { dimensional figures. }\end{array} \\ \hline \text { MA.912.GR.4.3 } & \begin{array}{l}\text { Access Point } \\ \text { MA.912.GR.4.AP.2 Identify a three-dimensional object generated by } \\ \text { the rotation of a two-dimensional figure. }\end{array} \\ \hline \begin{array}{l}\text { Extend previous understanding of scale drawings and scale factors to } \\ \text { determine how dilations affect the area of two-dimensional figures } \\ \text { and the surface area or volume of three-dimensional figures. }\end{array} \\ \hline \begin{array}{l}\text { Access Point } \\ \text { MA.912.GR.4.AP.3 Select the effect of a dilation on the area of two- } \\ \text { dimensional figures and/or surface area or volume of three- } \\ \text { dimensional figures. }\end{array} \\ \hline & \begin{array}{l}\text { Solve mathematical and real-world problems involving the area of } \\ \text { two-dimensional figures. }\end{array} \\ \hline \text { Ancess Point } \\ \text { MA.912.GR.4.AP.4 Solve mathematical and/or real-world problems }\end{array}\right\}$

MA.912.GR.4.5	Solve mathematical and real-world problems involving the volume of three-dimensional figures limited to cylinders, pyramids, prisms, cones and spheres.				
	Access Point MA.912.GR.4.AP.5 Solve mathematical or real-world problems involving the volume of three-dimensional figures limited to cylinders, pyramids, prisms, or cones.				
MA.912.GR.4.6	Solve mathematical and real-world problems involving the surface area of three-dimensional figures limited to cylinders, pyramids, prisms, cones and spheres.				
	Access Point MA.912.GR.4.AP.6 Solve mathematical or real-world problems involving the surface area of three-dimensional figures limited to cylinders, pyramids, prisms, and cones.				
MA.912.GR.5 Make formal geometric constructions with a variety of tools and methods.					
MA.912.GR.5.1	Construct a copy of a segment or an angle.				
Mccess Point					
MA.912.GR.5.AP.1 Construct a copy of a segment.		$	$	MA.912.GR.5.2	Construct the bisector of a segment or an angle, including the perpendicular bisector of a line segment.
:---	:---				
	Access Point MA.912.GR.5.AP. 2 Construct the bisector of a segment, including the perpendicular bisector of a line segment.				
MA.912.GR.5.3	Construct the inscribed and circumscribed circles of a triangle.				
Access Point					
MA.912.GR.5.AP.3 Select the inscribed and circumscribed circles of					
a triangle.					

MA.912.GR.6.3	Solve mathematical problems involving triangles and quadrilaterals inscribed in a circle.
	Access Point MA.912.GR.6.AP. 3 Identify and describe the relationship involving triangles and quadrilaterals inscribed in a circle.
MA.912.GR.6.4	Solve mathematical and real-world problems involving the arc length and area of a sector in a given circle.
	Access Point MA.912.GR.6.AP. 4 Identify and describe the relationship involving the arc length and area of a sector in a given circle.
MA.912.GR. 7 Apply geometric and algebraic representations of conic sections.	
MA.912.GR.7.2	Given a mathematical or real-world context, derive and create the equation of a circle using key features.
	Access Point MA.912.GR.7.AP. 2 Create the equation of a circle when given the center and radius.
MA.912.GR.7.3	Graph and solve mathematical and real-world problems that are modeled with an equation of a circle. Determine and interpret key features in terms of the context.
	Access Point MA.912.GR.7.AP. 3 Given an equation of a circle, identify center and radius, and graph the circle.
9-12 Data Analysis and Probability Strand	
MA.912.DP. 1 Summarize, represent and interpret categorical and numerical data with one and two variables.	
MA.912.DP.1.1	Given a set of data, select an appropriate method to represent the data, depending on whether it is numerical or categorical data and on whether it is univariate or bivariate.
	Access Point MA.912.DP.1.AP.1a Given a set of data, select an appropriate table or graph to represent categorical data and whether it is univariate or bivariate.
	MA.912.DP.1.AP.1b Given a set of data, select an appropriate table or graph to represent numerical data and whether it is univariate or bivariate.
MA.912.DP.1.2	Interpret data distributions represented in various ways. State whether the data is numerical or categorical, whether it is univariate or bivariate and interpret the different components and quantities in the display.
	Access Point MA.912.DP.1.AP. 2 Given a univariate or bivariate data distribution (numerical or categorical), identify the different components and quantities in the display.

MA.912.DP.1.3	Explain the difference between correlation and causation in the contexts of both numerical and categorical data.
	Access Point MA.912.DP.1.AP.3 Identify whether the data is explained by correlation or causation in the contexts of both numerical and categorical data.
MA.912.DP.1.4	Estimate a population total, mean or percentage using data from a sample survey; develop a margin of error through the use of simulation.
	Access Point MA.912.DP.1.AP.4 Given the mean or percentage and the margin of error from a sample survey, identify a population total.
MA.912.DP.2 Solve problems involving univariate and bivariate numerical data.	
MA.912.DP.2.4	Fit a linear function to bivariate numerical data that suggests a linear association and interpret the slope and y-intercept of the model. Use the model to solve real-world problems in terms of the context of the data.
	Access Point MA.912.DP.2.AP.4 Fit a linear function to bivariate numerical data that suggests a linear association and interpret the slope and y- intercept of the model.
MA.912.DP.2.6	Compute the correlation coefficient of a linear model using technology. Interpret the strength and direction of the correlation coefficient.
Access Point	
MA.912.DP.2.AP.6 Given a scatter plot with a line of fit and	
residuals, determine the strength and direction of the correlation.	
Interpret strength and direction within a real-world context.	

MA.912.DP. 3 Solve problems involving categorical data.

MA.912.DP.3.1	Construct a two-way frequency table summarizing bivariate categorical data. Interpret joint and marginal frequencies and determine possible associations in terms of a real-world context.
	Access Point MA.912.DP.3.AP.1 When given a two-way frequency table summarizing bivariate categorical data, identify joint and marginal frequencies.

9-12 Trigonometry

MA.912.T.1 Define and use trigonometric ratios, identities or functions to solve problems.	
MA.912.T.1.1	Define trigonometric ratios for acute angles in right triangles.
	Access Point MA.912.T.1.AP.1 Select a trigonometric ratio for acute angles in right triangles limited to sine or cosine.
MA.912.T.1.2	Solve mathematical and real-world problems involving right triangles using trigonometric ratios and the Pythagorean Theorem.
	Access Point MA.912.T.1.AP.2 Given a mathematical and/or real-world problem involving right triangles, solve using trigonometric ratio or the Pythagorean Theorem.

9-12 Logic and Theory Strand

MA.912.LT.4 Develop an understanding of the fundamentals of propositional logic, arguments and methods of proof.

MA.912.LT.4.3	Identify and accurately interpret "if...then," "if and only if," "all" and "not" statements. Find the converse, inverse and contrapositive of a statement.
	Access Point MA.912.LT.4.AP.3 Identify and accurately interpret "if...then," "if and only if," "all" or "not" statements.
MA.912.LT.4.10	Judge the validity of arguments and give counterexamples to disprove statements.
	Access Point MA.912.LT.4.AP.10 Select the validity of an argument or give counterexamples to disprove statements.

